Program logic frequently tests conditions that determine how program execution proceeds. Consider the following pseudocode:
Perform a task
If the preceding task did not execute correctly
Perform error processing
Perform next task
If the preceding task did not execute correctly
Perform error processing
...
In this pseudocode, we begin by performing a task. We then test whether that task executed correctly. If not, we perform error processing. Otherwise, we continue with the next task. Although this form of error handling works, intermixing program logic with error-handling logic can make the program difficult to read, modify, maintain and debugespecially in large applications.
Performance Tip 16.1
If the potential problems occur infrequently, intermixing program logic and error-handling logic can degrade a program's performance, because the program must (potentially frequently) perform tests to determine whether the task executed correctly and the next task can be performed. |
Exception handling enables the programmer to remove error-handling code from the "main line" of the program's execution, which improves program clarity and enhances modifiability. Programmers can decide to handle any exceptions they chooseall exceptions, all exceptions of a certain type or all exceptions of a group of related types (e.g., exception types that belong to an inheritance hierarchy). Such flexibility reduces the likelihood that errors will be overlooked and thereby makes a program more robust.
With programming languages that do not support exception handling, programmers often delay writing error-processing code or sometimes forget to include it. This results in less robust software products. C++ enables the programmer to deal with exception handling easily from the inception of a project.
Introduction to Computers, the Internet and World Wide Web
Introduction to C++ Programming
Introduction to Classes and Objects
Control Statements: Part 1
Control Statements: Part 2
Functions and an Introduction to Recursion
Arrays and Vectors
Pointers and Pointer-Based Strings
Classes: A Deeper Look, Part 1
Classes: A Deeper Look, Part 2
Operator Overloading; String and Array Objects
Object-Oriented Programming: Inheritance
Object-Oriented Programming: Polymorphism
Templates
Stream Input/Output
Exception Handling
File Processing
Class string and String Stream Processing
Web Programming
Searching and Sorting
Data Structures
Bits, Characters, C-Strings and structs
Standard Template Library (STL)
Other Topics
Appendix A. Operator Precedence and Associativity Chart
Appendix B. ASCII Character Set
Appendix C. Fundamental Types
Appendix D. Number Systems
Appendix E. C Legacy Code Topics
Appendix F. Preprocessor
Appendix G. ATM Case Study Code
Appendix H. UML 2: Additional Diagram Types
Appendix I. C++ Internet and Web Resources
Appendix J. Introduction to XHTML
Appendix K. XHTML Special Characters
Appendix L. Using the Visual Studio .NET Debugger
Appendix M. Using the GNU C++ Debugger
Bibliography