In the previous section, we saw how to convert binary numbers to their octal and hexadecimal equivalents by forming groups of binary digits and simply rewriting them as their equivalent octal digit values or hexadecimal digit values. This process may be used in reverse to produce the binary equivalent of a given octal or hexadecimal number.
For example, the octal number 653 is converted to binary simply by writing the 6 as its 3-digit binary equivalent 110, the 5 as its 3-digit binary equivalent 101 and the 3 as its 3-digit binary equivalent 011 to form the 9-digit binary number 110101011.
The hexadecimal number FAD5 is converted to binary simply by writing the F as its 4-digit binary equivalent 1111, the A as its 4-digit binary equivalent 1010, the D as its 4-digit binary equivalent 1101 and the 5 as its 4-digit binary equivalent 0101 to form the 16-digit 1111101011010101.
Introduction to Computers, the Internet and World Wide Web
Introduction to C++ Programming
Introduction to Classes and Objects
Control Statements: Part 1
Control Statements: Part 2
Functions and an Introduction to Recursion
Arrays and Vectors
Pointers and Pointer-Based Strings
Classes: A Deeper Look, Part 1
Classes: A Deeper Look, Part 2
Operator Overloading; String and Array Objects
Object-Oriented Programming: Inheritance
Object-Oriented Programming: Polymorphism
Templates
Stream Input/Output
Exception Handling
File Processing
Class string and String Stream Processing
Web Programming
Searching and Sorting
Data Structures
Bits, Characters, C-Strings and structs
Standard Template Library (STL)
Other Topics
Appendix A. Operator Precedence and Associativity Chart
Appendix B. ASCII Character Set
Appendix C. Fundamental Types
Appendix D. Number Systems
Appendix E. C Legacy Code Topics
Appendix F. Preprocessor
Appendix G. ATM Case Study Code
Appendix H. UML 2: Additional Diagram Types
Appendix I. C++ Internet and Web Resources
Appendix J. Introduction to XHTML
Appendix K. XHTML Special Characters
Appendix L. Using the Visual Studio .NET Debugger
Appendix M. Using the GNU C++ Debugger
Bibliography