FFT INPUT/OUTPUT DATA INDEX BIT REVERSAL

FFT INPUT OUTPUT DATA INDEX BIT REVERSAL

OK, let's look into some of the special properties of the FFT that are important to FFT software developers and FFT hardware designers. Notice that Figure 4-5 was titled "Full decimation-in-time FFT implementation of an 8-point DFT." The decimation-in-time phrase refers to how we broke the DFT input samples into odd and even parts in the derivation of Eqs. (4-20), (4-23), and (4-24). This time decimation leads to the scrambled order of the input data's index n in Figure 4-5. The pattern of this shuffled order can be understood with the help of Table 4-1. The shuffling of the input data is known as bit reversal because the scrambled order of the input data index can be obtained by reversing the bits of the binary representation of the normal input data index order. Sounds confusing, but it's really not—Table 4-1 illustrates the input index bit reversal for our 8-point FFT example. Notice the normal index order in the left column of Table 4-1 and the scrambled order in the right column that corresponds to the final decimated input index order in Figure 4-5. We've transposed the original binary bits representing the normal index order by reversing their positions. The most significant bit becomes the least significant bit and the least significant bit becomes the most significant bit, the next to the most significant bit becomes the next to the least significant bit, and the next to the least significant bit becomes the next to the most significant bit, and so on.[]

[] Many that are first shall be last; and the last first. [Mark 10:31]

Table 4-1. Input Index Bit Reversal for an 8-point FFT

Normal order of index n

Binary bits of index n

Reversed bits of index n

Bit-reversed of order index n

0

000

000

0

1

001

100

4

2

010

010

2

3

011

110

6

4

100

001

1

5

101

101

5

6

110

011

3

7

111

111

7


 
Amazon
 
 
Prev don't be afraid of buying books Next
 
 

Chapter One. Discrete Sequences and Systems

Chapter Two. Periodic Sampling

Chapter Three. The Discrete Fourier Transform

Chapter Four. The Fast Fourier Transform

Chapter Five. Finite Impulse Response Filters

Chapter Six. Infinite Impulse Response Filters

Chapter Seven. Specialized Lowpass FIR Filters

Chapter Eight. Quadrature Signals

Chapter Nine. The Discrete Hilbert Transform

Chapter Ten. Sample Rate Conversion

Chapter Eleven. Signal Averaging

Chapter Twelve. Digital Data Formats and Their Effects

Chapter Thirteen. Digital Signal Processing Tricks

Appendix A. The Arithmetic of Complex Numbers

Appendix B. Closed Form of a Geometric Series

Appendix C. Time Reversal and the DFT

Appendix D. Mean, Variance, and Standard Deviation

Appendix E. Decibels (dB and dBm)

Appendix F. Digital Filter Terminology

Appendix G. Frequency Sampling Filter Derivations

Appendix H. Frequency Sampling Filter Design Tables



Understanding Digital Signal Processing
Understanding Digital Signal Processing (2nd Edition)
ISBN: 0131089897
EAN: 2147483647
Year: 2004
Pages: 183

Flylib.com © 2008-2020.
If you may any questions please contact us: flylib@qtcs.net