Chapter Eight. Quadrature Signals

Table of contents:

Eight Quadrature Signals

Quadrature signals are based on the notion of complex numbers. Perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j-operator, complex, analytic, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = operator, don't feel bad because you're in good company. Sixteenth century Italian mathematician Girolamo Cardano described an imaginary number "as subtle as it is useless." In the 17th century Gottfried Leibniz described imaginary numbers as being "amphibian, halfway between existence and nonexistence." (The term "imaginary" was first used by the brilliant mathematician/philosopher René Descartes in the 17th century, and was meant to be derogatory. That's because not only was the notion of the square root of a negative number dubious at best, surprisingly there was no consensus at that time as to the true meaning of negative real numbers.) Even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of shadows." Here we'll shine some light on that shadow so you'll never have to call the Quadrature Psychic Hotline for help.

Quadrature signals, represented by complex numbers, are used in just about every field of science and engineering.[] Quadrature signals are of interest to us because they describe the effects of Fourier analysis as well as the quadrature processing and implementations that take place in modern digital communications systems. In this chapter we'll review the fundamentals of complex numbers and get comfortable with how they're used to represent quadrature signals. Next we'll examine the notion of negative frequency as it relates to quadrature signal algebraic notation, and learn to speak the language of quadrature processing. In addition, we'll use three-dimensional time and frequency-domain plots to clarify and give physical meaning to quadrature signals.

[] That's because complex sinusoids are solutions to those second order linear differential equations used to describe so much of nature.

 
Amazon
 
 
Prev don't be afraid of buying books Next
 
 

Chapter One. Discrete Sequences and Systems

Chapter Two. Periodic Sampling

Chapter Three. The Discrete Fourier Transform

Chapter Four. The Fast Fourier Transform

Chapter Five. Finite Impulse Response Filters

Chapter Six. Infinite Impulse Response Filters

Chapter Seven. Specialized Lowpass FIR Filters

Chapter Eight. Quadrature Signals

Chapter Nine. The Discrete Hilbert Transform

Chapter Ten. Sample Rate Conversion

Chapter Eleven. Signal Averaging

Chapter Twelve. Digital Data Formats and Their Effects

Chapter Thirteen. Digital Signal Processing Tricks

Appendix A. The Arithmetic of Complex Numbers

Appendix B. Closed Form of a Geometric Series

Appendix C. Time Reversal and the DFT

Appendix D. Mean, Variance, and Standard Deviation

Appendix E. Decibels (dB and dBm)

Appendix F. Digital Filter Terminology

Appendix G. Frequency Sampling Filter Derivations

Appendix H. Frequency Sampling Filter Design Tables



Understanding Digital Signal Processing
Understanding Digital Signal Processing (2nd Edition)
ISBN: 0131089897
EAN: 2147483647
Year: 2004
Pages: 183

Flylib.com © 2008-2020.
If you may any questions please contact us: flylib@qtcs.net