Method Call Stack and Activation Records

To understand how C# performs method calls, we first need to consider a data structure (i.e., collection of related data items) known as a stack. You can think of a stack as analogous to a pile of dishes. When a dish is placed on the pile, it is normally placed at the top (referred to as pushing the dish onto the stack). Similarly, when a dish is removed from the pile, it is always removed from the top (referred to as popping the dish off the stack). Stacks are known as last-in-first-out (LIFO) data structuresthe last item pushed (inserted) on the stack is the first item popped off (removed from) the stack.

When an application calls a method, the called method must know how to return to its caller, so the return address of the calling method is pushed onto the program execution stack (sometimes referred to as the method call stack). If a series of method calls occurs, the successive return addresses are pushed onto the stack in last-in-first-out order so that each method can return to its caller.

The program execution stack also contains the memory for the local variables used in each invocation of a method during an application's execution. This data, stored as a portion of the program execution stack, is known as the activation record or stack frame of the method call. When a method call is made, the activation record for that method call is pushed onto the program execution stack. When the method returns to its caller, the activation record for this method call is popped off the stack, and those local variables are no longer known to the application. If a local variable holding a reference to an object is the only variable in the application with a reference to that object, when the activation record containing that local variable is popped off the stack, the object can no longer be accessed by the application and will eventually be deleted from memory during "garbage collection." We'll discuss garbage collection in Section 9.9.

Of course, the amount of memory in a computer is finite, so only a certain amount of memory can be used to store activation records on the program execution stack. If more method calls occur than can have their activation records stored on the program execution stack, an error known as a stack overflow occurs.


Argument Promotion and Casting

Preface

Index

    Introduction to Computers, the Internet and Visual C#

    Introduction to the Visual C# 2005 Express Edition IDE

    Introduction to C# Applications

    Introduction to Classes and Objects

    Control Statements: Part 1

    Control Statements: Part 2

    Methods: A Deeper Look

    Arrays

    Classes and Objects: A Deeper Look

    Object-Oriented Programming: Inheritance

    Polymorphism, Interfaces & Operator Overloading

    Exception Handling

    Graphical User Interface Concepts: Part 1

    Graphical User Interface Concepts: Part 2

    Multithreading

    Strings, Characters and Regular Expressions

    Graphics and Multimedia

    Files and Streams

    Extensible Markup Language (XML)

    Database, SQL and ADO.NET

    ASP.NET 2.0, Web Forms and Web Controls

    Web Services

    Networking: Streams-Based Sockets and Datagrams

    Searching and Sorting

    Data Structures

    Generics

    Collections

    Appendix A. Operator Precedence Chart

    Appendix B. Number Systems

    Appendix C. Using the Visual Studio 2005 Debugger

    Appendix D. ASCII Character Set

    Appendix E. Unicode®

    Appendix F. Introduction to XHTML: Part 1

    Appendix G. Introduction to XHTML: Part 2

    Appendix H. HTML/XHTML Special Characters

    Appendix I. HTML/XHTML Colors

    Appendix J. ATM Case Study Code

    Appendix K. UML 2: Additional Diagram Types

    Appendix L. Simple Types

    Index



    Visual C# How to Program
    Visual C# 2005 How to Program (2nd Edition)
    ISBN: 0131525239
    EAN: 2147483647
    Year: 2004
    Pages: 600

    Flylib.com © 2008-2020.
    If you may any questions please contact us: flylib@qtcs.net