In the next several problems, we take a temporary diversion from the world of high-level language programming to "peel open" a computer and look at its internal structure. We introduce machine-language programming and write several machine-language programs. To make this an especially valuable experience, we then build a computer (through the technique of software-based simulation) on which you can execute your machine-language programs.
8.31 |
(Machine-Language Programming) Let us create a computer called the Simpletron. As its name implies, it is a simple, but powerful, machine. The Simpletron runs programs written in the only language it directly understands: Simpletron Machine Language, or SML for short. The Simpletron contains an accumulatora special register in which information is put before the Simpletron uses that information in calculations or examines it in various ways. All the information in the Simpletron is handled in terms of words. A word is a signed four-digit decimal number, such as +3364, -1293, +0007 and -0001. The Simpletron is equipped with a 100-word memory, and these words are referenced by their location numbers 00, 01, ..., 99. Before running an SML program, we must load, or place, the code into memory. The first instruction (or statement) of every SML program is always placed in location 00. The simulator will start executing at this location. Each instruction written in SML occupies one word of the Simpletron's memory (hence, instructions are signed four-digit decimal numbers). We shall assume that the sign of an SML instruction is always plus, but the sign of a data word may be either plus or minus. Each location in the Simpletron's memory may contain an instruction, a data value used by a program or an unused (and hence undefined) area of memory. The first two digits of each SML instruction are the operation code specifying the operation to be performed. SML operation codes are summarized in Fig. 8.34.
The last two digits of an SML instruction are the operandthe address of the memory location containing the word to which the operation applies. Let's consider several simple SML programs. The first SML program (Fig. 8.35) reads two numbers from the keyboard, then computes and displays their sum. The instruction +1007 reads the first number from the keyboard and places it into location 07 (which has been initialized to 0). Then instruction +1008 reads the next number into location 08. The load instruction, +2007, puts the first number into the accumulator, and the add instruction, +3008, adds the second number to the number in the accumulator. All SML arithmetic instructions leave their results in the accumulator. The store instruction, +2109, places the result in memory location 09, from which the write instruction, +1109, takes the number and displays it (as a signed four-digit decimal number). The halt instruction, +4300, terminates execution.
The second SML program (Fig. 8.36) reads two numbers from the keyboard and determines and displays the larger value. Note the use of the instruction +4107 as a conditional transfer of control, much the same as C#'s if statement.
Now write SML programs to accomplish each of the following tasks:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8.32 |
(Computer Simulator) In this problem, you are going to build your own computer. No, you will not be soldering components together. Rather, you will use the powerful technique of software-based simulation to create an object-oriented software model of the Simpletron of Exercise 8.31. Your Simpletron simulator will turn the computer you are using into a Simpletron, and you will actually be able to run, test and debug the SML programs you wrote in Exercise 8.31. When you run your Simpletron simulator, it should begin by displaying: *** Welcome to Simpletron! *** *** Please enter your program one instruction *** *** ( or data word ) at a time into the input *** *** text field. I will display the location *** *** number and a question mark (?). You then *** *** type the word for that location. Enter *** *** -99999 to stop entering your program. *** Your application should simulate the memory of the Simpletron with one-dimensional array memory of 100 elements. Now assume that the simulator is running, and let us examine the dialog as we enter the program of Fig. 8.36 (Exercise 8.31): 00 ? +1009 01 ? +1010 02 ? +2009 03 ? +3110 04 ? +4107 05 ? +1109 06 ? +4300 07 ? +1110 08 ? +4300 09 ? +0000 10 ? +0000 11 ? -99999 Your program should display the memory location followed by a question mark. Each of the values to the right of a question mark is input by the user. When the sentinel value -99999 is input, the program should display the following: *** Program loading completed *** *** Program execution begins *** The SML program has now been placed (or loaded) in array memory. Now the Simpletron executes the SML program. Execution begins with the instruction in location 00 and, as in C#, continues sequentially, unless directed to some other part of the program by a transfer of control. Use variable accumulator to represent the accumulator register. Use variable instructionCounter to keep track of the location in memory that contains the instruction being performed. Use variable operationCode to indicate the operation currently being performed (i.e., the left two digits of the instruction word). Use variable operand to indicate the memory location on which the current instruction operates. Thus, operand is the rightmost two digits of the instruction currently being performed. Do not execute instructions directly from memory. Rather, transfer the next instruction to be performed from memory to a variable called instructionRegister. Then "pick off" the left two digits and place them in operationCode, and "pick off" the right two digits and place them in operand. When the Simpletron begins execution, the special registers are all initialized to zero. Now, let us "walk through" execution of the first SML instruction, +1009 in memory location 00. This procedure is called an instruction execution cycle. The instructionCounter tells us the location of the next instruction to be performed. We fetch the contents of that location from memory by using the C# statement instructionRegister = memory[ instructionCounter ]; The operation code and the operand are extracted from the instruction register by the statements operationCode = instructionRegister / 100; operand = instructionRegister % 100; Now the Simpletron must determine that the operation code is actually a read (versus a write, a load, etc.). A switch differentiates among the 12 operations of SML. In the switch statement, the behavior of various SML instructions is simulated as shown in Fig. 8.37. We discuss branch instructions shortly and leave the others to you.
When the SML program completes execution, the name and contents of each register, as well as the complete contents of memory, should be displayed. Such a printout is often called a memory dump. To help you program your dump method, a sample dump format is shown in Fig. 8.38. Note that a dump after executing a Simpletron program would show the actual values of instructions and data values at the moment execution terminated.
Let us proceed with the execution of our program's first instructionnamely, the +1009 in location 00. As we have indicated, the switch statement simulates this task by prompting the user to enter a value, reading the value and storing it in memory location memory[ operand ]. The value is then read into location 09. At this point, simulation of the first instruction is completed. All that remains is to prepare the Simpletron to execute the next instruction. Since the instruction just performed was not a transfer of control, we need merely increment the instruction-counter register as follows: instructionCounter++; This action completes the simulated execution of the first instruction. The entire process (i.e., the instruction execution cycle) begins anew with the fetch of the next instruction to execute. Now let us consider how the branching instructionsthe transfers of controlare simulated. All we need to do is adjust the value in the instruction counter appropriately. Therefore, the unconditional branch instruction (40) is simulated within the switch as instructionCounter = operand; The conditional "branch if accumulator is zero" instruction is simulated as if ( accumulator == 0 ) instructionCounter = operand; At this point, you should implement your Simpletron simulator and run each of the SML programs you wrote in Exercise 8.31. If you desire, you may embellish SML with additional features and provide for these features in your simulator. Your simulator should check for various types of errors. During the program-loading phase, for example, each number the user types into the Simpletron's memory must be in the range -9999 to +9999. Your simulator should test that each number entered is in this range and, if not, keep prompting the user to re-enter the number until the user enters a correct number. During the execution phase, your simulator should check for various serious errors, such as attempts to divide by zero, attempts to execute invalid operation codes and accumulator overflows (i.e., arithmetic operations resulting in values larger than +9999 or smaller than -9999). Such serious errors are called fatal errors. When a fatal error is detected, your simulator should display an error message, such as *** Attempt to divide by zero *** *** Simpletron execution abnormally terminated *** and should display a full computer dump in the format we discussed previously. This treatment will help the user locate the error in the program. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8.33 |
(Simpletron Simulator Modifications) In Exercise 8.32, you wrote a software simulation of a computer that executes programs written in Simpletron Machine Language (SML). In this exercise, we propose several modifications and enhancements to the Simpletron Simulator. In Exercise 25.10 and Exercise 25.11, we propose building a compiler that converts programs written in a high-level programming language (a variation of Basic) to Simpletron Machine Language. Some of the following modifications and enhancements may be required to execute the programs produced by the compiler:
|
Preface
Index
Introduction to Computers, the Internet and Visual C#
Introduction to the Visual C# 2005 Express Edition IDE
Introduction to C# Applications
Introduction to Classes and Objects
Control Statements: Part 1
Control Statements: Part 2
Methods: A Deeper Look
Arrays
Classes and Objects: A Deeper Look
Object-Oriented Programming: Inheritance
Polymorphism, Interfaces & Operator Overloading
Exception Handling
Graphical User Interface Concepts: Part 1
Graphical User Interface Concepts: Part 2
Multithreading
Strings, Characters and Regular Expressions
Graphics and Multimedia
Files and Streams
Extensible Markup Language (XML)
Database, SQL and ADO.NET
ASP.NET 2.0, Web Forms and Web Controls
Web Services
Networking: Streams-Based Sockets and Datagrams
Searching and Sorting
Data Structures
Generics
Collections
Appendix A. Operator Precedence Chart
Appendix B. Number Systems
Appendix C. Using the Visual Studio 2005 Debugger
Appendix D. ASCII Character Set
Appendix E. Unicode®
Appendix F. Introduction to XHTML: Part 1
Appendix G. Introduction to XHTML: Part 2
Appendix H. HTML/XHTML Special Characters
Appendix I. HTML/XHTML Colors
Appendix J. ATM Case Study Code
Appendix K. UML 2: Additional Diagram Types
Appendix L. Simple Types
Index