if Single-Selection Statement

Programs use selection statements to choose among alternative courses of action. For example, suppose that the passing grade on an exam is 60. The pseudocode statement


      If student's grade is greater than or equal to 60
            Print "Passed"

determines whether the condition "student's grade is greater than or equal to 60" is true or false. If the condition is true, "Passed" is printed, and the next pseudocode statement in order is "performed." (Remember that pseudocode is not a real programming language.) If the condition is false, the Print statement is ignored, and the next pseudocode statement in order is performed. The indentation of the second line of this selection statement is optional, but recommended, because it emphasizes the inherent structure of structured programs.

The preceding pseudocode If statement may be written in Java as

 if ( studentGrade >= 60 )
 System.out.println( "Passed" );

Note that the Java code corresponds closely to the pseudocode. This is one of the properties of pseudocode that makes it such a useful program development tool.

Figure 4.2 illustrates the single-selection if statement. This activity diagram contains what is perhaps the most important symbol in an activity diagramthe diamond, or decision symbol, which indicates that a decision is to be made. The workflow will continue along a path determined by the symbol's associated guard conditions, which can be true or false. Each transition arrow emerging from a decision symbol has a guard condition (specified in square brackets next to the transition arrow). If a guard condition is true, the workflow enters the action state to which the transition arrow points. In Fig. 4.2, if the grade is greater than or equal to 60, the program prints "Passed," then transitions to the final state of this activity. If the grade is less than 60, the program immediately transitions to the final state without displaying a message.

Figure 4.2. if single-selection statement UML activity diagram.

(This item is displayed on page 129 in the print version)

The if statement is a single-entry/single-exit control statement. We will see that the activity diagrams for the remaining control statements also contain initial states, transition arrows, action states that indicate actions to perform, decision symbols (with associated guard conditions) that indicate decisions to be made and final states. This is consistent with the action/decision model of programming we have been emphasizing.

Envision seven bins, each containing only one type of Java control statement. The control statements are all empty. Your task is to assemble a program from as many of each type of control statement as the algorithm demands, combining the control statements in only two possible ways (stacking or nesting), then filling in the action states and decisions with action expressions and guard conditions appropriate for the algorithm. We will discuss the variety of ways in which actions and decisions can be written.

Introduction to Computers, the Internet and the World Wide Web

Introduction to Java Applications

Introduction to Classes and Objects

Control Statements: Part I

Control Statements: Part 2

Methods: A Deeper Look

Arrays

Classes and Objects: A Deeper Look

Object-Oriented Programming: Inheritance

Object-Oriented Programming: Polymorphism

GUI Components: Part 1

Graphics and Java 2D™

Exception Handling

Files and Streams

Recursion

Searching and Sorting

Data Structures

Generics

Collections

Introduction to Java Applets

Multimedia: Applets and Applications

GUI Components: Part 2

Multithreading

Networking

Accessing Databases with JDBC

Servlets

JavaServer Pages (JSP)

Formatted Output

Strings, Characters and Regular Expressions

Appendix A. Operator Precedence Chart

Appendix B. ASCII Character Set

Appendix C. Keywords and Reserved Words

Appendix D. Primitive Types

Appendix E. (On CD) Number Systems

Appendix F. (On CD) Unicode®

Appendix G. Using the Java API Documentation

Appendix H. (On CD) Creating Documentation with javadoc

Appendix I. (On CD) Bit Manipulation

Appendix J. (On CD) ATM Case Study Code

Appendix K. (On CD) Labeled break and continue Statements

Appendix L. (On CD) UML 2: Additional Diagram Types

Appendix M. (On CD) Design Patterns

Appendix N. Using the Debugger

Inside Back Cover



Java(c) How to Program
Java How to Program (6th Edition) (How to Program (Deitel))
ISBN: 0131483986
EAN: 2147483647
Year: 2003
Pages: 615

Flylib.com © 2008-2020.
If you may any questions please contact us: flylib@qtcs.net