Main Page

don't be afraid of buying books Next
   
   
•  Table of Contents
Understanding Digital Signal Processing, Second Edition
By Richard G. Lyons
 
Publisher : Prentice Hall PTR
Pub Date : March 15, 2004
ISBN : 0-13-108989-7
Pages : 688


Understanding Digital Signal Processing, Second Edition is quite simply the best way for engineers, and other technical professionals, to master and apply DSP techniques. Lyons has updated and expanded his best-selling first edition-building on the exceptionally readable coverage that made it the favorite of professionals worldwide.

This book achieves the perfect balance between theory and practice, making DSP accessible to beginners without ever oversimplifying it. Comprehensive in scope and gentle in approach, keeping the math at a tolerable level, this book helps readers thoroughly grasp the basics and quickly move on to more sophisticated techniques.

This edition adds extensive new coverage of quadrature signals for digital communications; recent improvements in digital filtering; and much more. It also contains more than twice as many "DSP Tips and Tricks"... including clever techniques even seasoned professionals may have overlooked.

  • Down-to-earth, intuitive, and example-rich, with detailed numerical exercises

  • Stresses practical, day-to-day DSP implementations and problem-solving

  • All-new quadrature processing coverage includes easy-to-understand 3D drawings

  • Extended coverage of IIR filters; plus frequency sampling, interpolated FIR filters

  • New coverage of multirate systems; including both polyphase and cascaded integrator-comb FIR filters

  • Coverage includes: periodic sampling, DFT, FFT, digital filters, discrete Hilbert transforms, sample rate conversion, quantization, signal averaging, and more





Amazon
Prev don't be afraid of buying books Next
   
   
•  Table of Contents
Understanding Digital Signal Processing, Second Edition
By Richard G. Lyons
 
Publisher : Prentice Hall PTR
Pub Date : March 15, 2004
ISBN : 0-13-108989-7
Pages : 688


    Copyright
    About Prentice Hall Professional Technical Reference
    Preface
      LEARNING DIGITAL SIGNAL PROCESSING
      THE JOURNEY
      COMING ATTRACTIONS
      ACKNOWLEDGMENTS
      Chapter One.  Discrete Sequences and Systems
      Section 1.1.  DISCRETE SEQUENCES AND THEIR NOTATION
      Section 1.2.  SIGNAL AMPLITUDE, MAGNITUDE, POWER
      Section 1.3.  SIGNAL PROCESSING OPERATIONAL SYMBOLS
      Section 1.4.  INTRODUCTION TO DISCRETE LINEAR TIME-INVARIANT SYSTEMS
      Section 1.5.  DISCRETE LINEAR SYSTEMS
      Section 1.6.  TIME-INVARIANT SYSTEMS
      Section 1.7.  THE COMMUTATIVE PROPERTY OF LINEAR TIME-INVARIANT SYSTEMS
      Section 1.8.  ANALYZING LINEAR TIME-INVARIANT SYSTEMS
      REFERENCES
      Chapter Two.  Periodic Sampling
      Section 2.1.  ALIASING: SIGNAL AMBIGUITY IN THE FREQUENCY DOMAIN
      Section 2.2.  SAMPLING LOW-PASS SIGNALS
      Section 2.3.  SAMPLING BANDPASS SIGNALS
      Section 2.4.  SPECTRAL INVERSION IN BANDPASS SAMPLING
      REFERENCES
      Chapter Three.  The Discrete Fourier Transform
      Section 3.1.  UNDERSTANDING THE DFT EQUATION
      Section 3.2.  DFT SYMMETRY
      Section 3.3.  DFT LINEARITY
      Section 3.4.  DFT MAGNITUDES
      Section 3.5.  DFT FREQUENCY AXIS
      Section 3.6.  DFT SHIFTING THEOREM
      Section 3.7.  INVERSE DFT
      Section 3.8.  DFT LEAKAGE
      Section 3.9.  WINDOWS
      Section 3.10.  DFT SCALLOPING LOSS
      Section 3.11.  DFT RESOLUTION, ZERO PADDING, AND FREQUENCY-DOMAIN SAMPLING
      Section 3.12.  DFT PROCESSING GAIN
      Section 3.13.  THE DFT OF RECTANGULAR FUNCTIONS
      Section 3.14.  THE DFT FREQUENCY RESPONSE TO A COMPLEX INPUT
      Section 3.15.  THE DFT FREQUENCY RESPONSE TO A REAL COSINE INPUT
      Section 3.16.  THE DFT SINGLE-BIN FREQUENCY RESPONSE TO A REAL COSINE INPUT
      Section 3.17.  INTERPRETING THE DFT
      REFERENCES
      Chapter Four.  The Fast Fourier Transform
      Section 4.1.  RELATIONSHIP OF THE FFT TO THE DFT
      Section 4.2.  HINTS ON USING FFTS IN PRACTICE
      Section 4.3.  FFT SOFTWARE PROGRAMS
      Section 4.4.  DERIVATION OF THE RADIX-2 FFT ALGORITHM
      Section 4.5.  FFT INPUT/OUTPUT DATA INDEX BIT REVERSAL
      Section 4.6.  RADIX-2 FFT BUTTERFLY STRUCTURES
      REFERENCES
      Chapter Five.  Finite Impulse Response Filters
      Section 5.1.  AN INTRODUCTION TO FINITE IMPULSE RESPONSE (FIR) FILTERS
      Section 5.2.  CONVOLUTION IN FIR FILTERS
      Section 5.3.  LOW-PASS FIR FILTER DESIGN
      Section 5.4.  BANDPASS FIR FILTER DESIGN
      Section 5.5.  HIGHPASS FIR FILTER DESIGN
      Section 5.6.  REMEZ EXCHANGE FIR FILTER DESIGN METHOD
      Section 5.7.  HALF-BAND FIR FILTERS
      Section 5.8.  PHASE RESPONSE OF FIR FILTERS
      Section 5.9.  A GENERIC DESCRIPTION OF DISCRETE CONVOLUTION
      REFERENCES
      Chapter Six.  Infinite Impulse Response Filters
      Section 6.1.  AN INTRODUCTION TO INFINITE IMPULSE RESPONSE FILTERS
      Section 6.2.  THE LAPLACE TRANSFORM
      Section 6.3.  THE Z-TRANSFORM
      Section 6.4.  IMPULSE INVARIANCE IIR FILTER DESIGN METHOD
      Section 6.5.  BILINEAR TRANSFORM IIR FILTER DESIGN METHOD
      Section 6.6.  OPTIMIZED IIR FILTER DESIGN METHOD
      Section 6.7.  PITFALLS IN BUILDING IIR FILTERS
      Section 6.8.  IMPROVING IIR FILTERS WITH CASCADED STRUCTURES
      Section 6.9.  A BRIEF COMPARISON OF IIR AND FIR FILTERS
      REFERENCES
      Chapter Seven.  Specialized Lowpass FIR Filters
      Section 7.1.  FREQUENCY SAMPLING FILTERS: THE LOST ART
      Section 7.2.  INTERPOLATED LOWPASS FIR FILTERS
      REFERENCES
      Chapter Eight.  Quadrature Signals
      Section 8.1.  WHY CARE ABOUT QUADRATURE SIGNALS?
      Section 8.2.  THE NOTATION OF COMPLEX NUMBERS
      Section 8.3.  REPRESENTING REAL SIGNALS USING COMPLEX PHASORS
      Section 8.4.  A FEW THOUGHTS ON NEGATIVE FREQUENCY
      Section 8.5.  QUADRATURE SIGNALS IN THE FREQUENCY DOMAIN
      Section 8.6.  BANDPASS QUADRATURE SIGNALS IN THE FREQUENCY DOMAIN
      Section 8.7.  COMPLEX DOWN-CONVERSION
      Section 8.8.  A COMPLEX DOWN-CONVERSION EXAMPLE
      Section 8.9.  AN ALTERNATE DOWN-CONVERSION METHOD
      REFERENCES
      Chapter Nine.  The Discrete Hilbert Transform
      Section 9.1.  HILBERT TRANSFORM DEFINITION
      Section 9.2.  WHY CARE ABOUT THE HILBERT TRANSFORM?
      Section 9.3.  IMPULSE RESPONSE OF A HILBERT TRANSFORMER
      Section 9.4.  DESIGNING A DISCRETE HILBERT TRANSFORMER
      Section 9.5.  TIME-DOMAIN ANALYTIC SIGNAL GENERATION
      Section 9.6.  COMPARING ANALYTIC SIGNAL GENERATION METHODS
      REFERENCES
      Chapter Ten.  Sample Rate Conversion
      Section 10.1.  DECIMATION
      Section 10.2.  INTERPOLATION
      Section 10.3.  COMBINING DECIMATION AND INTERPOLATION
      Section 10.4.  POLYPHASE FILTERS
      Section 10.5.  CASCADED INTEGRATOR-COMB FILTERS
      REFERENCES
      Chapter Eleven.  Signal Averaging
      Section 11.1.  COHERENT AVERAGING
      Section 11.2.  INCOHERENT AVERAGING
      Section 11.3.  AVERAGING MULTIPLE FAST FOURIER TRANSFORMS
      Section 11.4.  FILTERING ASPECTS OF TIME-DOMAIN AVERAGING
      Section 11.5.  EXPONENTIAL AVERAGING
      REFERENCES
      Chapter Twelve.  Digital Data Formats and Their Effects
      Section 12.1.  FIXED-POINT BINARY FORMATS
      Section 12.2.  BINARY NUMBER PRECISION AND DYNAMIC RANGE
      Section 12.3.  EFFECTS OF FINITE FIXED-POINT BINARY WORD LENGTH
      Section 12.4.  FLOATING-POINT BINARY FORMATS
      Section 12.5.  BLOCK FLOATING-POINT BINARY FORMAT
      REFERENCES
      Chapter Thirteen.  Digital Signal Processing Tricks
      Section 13.1.  FREQUENCY TRANSLATION WITHOUT MULTIPLICATION
      Section 13.2.  HIGH-SPEED VECTOR MAGNITUDE APPROXIMATION
      Section 13.3.  FREQUENCY-DOMAIN WINDOWING
      Section 13.4.  FAST MULTIPLICATION OF COMPLEX NUMBERS
      Section 13.5.  EFFICIENTLY PERFORMING THE FFT OF REAL SEQUENCES
      Section 13.6.  COMPUTING THE INVERSE FFT USING THE FORWARD FFT
      Section 13.7.  SIMPLIFIED FIR FILTER STRUCTURE
      Section 13.8.  REDUCING A/D CONVERTER QUANTIZATION NOISE
      Section 13.9.  A/D CONVERTER TESTING TECHNIQUES
      Section 13.10.  FAST FIR FILTERING USING THE FFT
      Section 13.11.  GENERATING NORMALLY DISTRIBUTED RANDOM DATA
      Section 13.12.  ZERO-PHASE FILTERING
      Section 13.13.  SHARPENED FIR FILTERS
      Section 13.14.  INTERPOLATING A BANDPASS SIGNAL
      Section 13.15.  SPECTRAL PEAK LOCATION ALGORITHM
      Section 13.16.  COMPUTING FFT TWIDDLE FACTORS
      Section 13.17.  SINGLE TONE DETECTION
      Section 13.18.  THE SLIDING DFT
      Section 13.19.  THE ZOOM FFT
      Section 13.20.  A PRACTICAL SPECTRUM ANALYZER
      Section 13.21.  AN EFFICIENT ARCTANGENT APPROXIMATION
      Section 13.22.  FREQUENCY DEMODULATION ALGORITHMS
      Section 13.23.  DC REMOVAL
      Section 13.24.  IMPROVING TRADITIONAL CIC FILTERS
      Section 13.25.  SMOOTHING IMPULSIVE NOISE
      Section 13.26.  EFFICIENT POLYNOMIAL EVALUATION
      Section 13.27.  DESIGNING VERY HIGH-ORDER FIR FILTERS
      Section 13.28.  TIME-DOMAIN INTERPOLATION USING THE FFT
      Section 13.29.  FREQUENCY TRANSLATION USING DECIMATION
      Section 13.30.  AUTOMATIC GAIN CONTROL (AGC)
      Section 13.31.  APPROXIMATE ENVELOPE DETECTION
      Section 13.32.  A QUADRATURE OSCILLATOR
      Section 13.33.  DUAL-MODE AVERAGING
      REFERENCES
      Appendix A.  The Arithmetic of Complex Numbers
      Section A.1.  GRAPHICAL REPRESENTATION OF REAL AND COMPLEX NUMBERS
      Section A.2.  ARITHMETIC REPRESENTATION OF COMPLEX NUMBERS
      Section A.3.  ARITHMETIC OPERATIONS OF COMPLEX NUMBERS
      Section A.4.  SOME PRACTICAL IMPLICATIONS OF USING COMPLEX NUMBERS
      REFERENCES
      Appendix B.  Closed Form of a Geometric Series
      Appendix C.  Time Reversal and the DFT
      Appendix D.  Mean, Variance, and Standard Deviation
      Section D.1.  STATISTICAL MEASURES
      Section D.2.  STANDARD DEVIATION, OR RMS, OF A CONTINUOUS SINEWAVE
      Section D.3.  THE MEAN AND VARIANCE OF RANDOM FUNCTIONS
      Section D.4.  THE NORMAL PROBABILITY DENSITY FUNCTION
      REFERENCES
      Appendix E.  Decibels (dB and dBm)
      Section E.1.  USING LOGARITHMS TO DETERMINE RELATIVE SIGNAL POWER
      Section E.2.  SOME USEFUL DECIBEL NUMBERS
      Section E.3.  ABSOLUTE POWER USING DECIBELS
      Appendix F.  Digital Filter Terminology
      REFERENCES
      Appendix G.  Frequency Sampling Filter Derivations
      Section G.1.  FREQUENCY RESPONSE OF A COMB FILTER
      Section G.2.  SINGLE COMPLEX FSF FREQUENCY RESPONSE
      Section G.3.  MULTISECTION COMPLEX FSF PHASE
      Section G.4.  MULTISECTION COMPLEX FSF FREQUENCY RESPONSE
      Section G.5.  REAL FSF TRANSFER FUNCTION
      Section G.6.  TYPE-IV FSF FREQUENCY RESPONSE
      Appendix H.  Frequency Sampling Filter Design Tables
      About the Author

Amazon