Here we present a wellbehaved digital quadrature oscillator, whose output is yi(n) + jyq(n), having the structure shown in Figure 1379(a). If you're new to digital oscillators, that structure looks a little complicated but it's really not so bad. If you look carefully, you see the computations are
Figure 1379. Quadrature oscillators: (a) standard structure; (b) structure with AGC.
and
Equation 13134'
Those computations are merely the rectangular form of multiplying the previous complex output by a complex exponential ejq as
Equation 13135
So the theory of operation is simple. Each new complex output sample is the previous output sample rotated by q radians, where q is 2pft/fs with ft and fs being the oscillator tuning frequency and the sample rate, respectively, in Hz.
To start the oscillator, we set the initial conditions of yi(n–1) = 1 and yq(n–1) = 0 and repeatedly compute new outputs, as time index n advances, using Eq. (13134). This oscillator is called a coupled quadrature oscillator because the both of its previous outputs are used to compute each new inphase and each new quadrature output. It's a useful oscillator because the full range of tuning frequencies are available (from nearly zero Hz up to roughly fs/2), and its outputs are equal in amplitude unlike some other quadrature oscillator structures[77]. The tough part, however, is making this oscillator stable in fixedpoint arithmetic implementations.
Depending on the binary word widths, and the value q, the output amplitudes can either grow or decay as time increases because it's not possible to represent ejq having a magnitude of exactly one, over the full range of q, using fixedpoint number formats. The solution to amplitude variations is to compute and and multiply those samples by an instantaneous gain factor G(n) as shown in Figure 1379(b). The trick here is how to compute the gain samples G(n).
We can use a linear automatic gain control (AGC) method, described in Section 1330, as shown in Figure 1380(a) where a is a small value, say, a = 0.01. The value R is the desired rms value of the oscillator outputs. This AGC method greatly enhances the stability of our oscillator. However, there's a computationally simpler AGC scheme for our oscillator that can be developed using the Taylor series approximation we learned in school. Here's how.
Figure 1380. AGC schemes: (a) linear AGC; (b) simplified AGC.
Using an approach similar to Reference [78], we can define the desired gain as
Equation 13136
This is the desired output signal magnitude Mdes over the actual output magnitude Mact. We can also represent the gain using power as
Equation 13137
where the constant Pdes is the desired output signal power and Pact is the actual output power. The right side of Eq. (13137) shows Pact replaced by the desired power Pdes plus an error component E, and that's the ratio we'll compute. To avoid square root computations and, because the error E will be small, we'll approximate that ratio with a twoterm Taylor series expansion about E = 0 using
Equation 13138
Computing the Taylor series' coefficients to be a0 = 1 and a1 = –1/2Pdes, and recalling that E = Pact–Pdes, we estimate the instantaneous gain as
Equation 13139
If we let the quadrature output peak amplitudes equal 1/ , Pdes equals 1/2 and we eliminate the division in Eq. (13139) obtaining
Equation 13140
The simplified structure of the G(n) computation is shown in Figure 1380(b).
As for practical issues, to avoid gain values greater than one (for those fixedpoint fractional number systems that don't allow numbers 1), we use the clever recommendation from Reference [77] of multiplying by G(n)/2 and doubling the products in Figure 1379(b). Reference [78] recommends using rounding, instead of truncation, for all intermediate computations to improve output spectral purity. Rounding also provides a slight improvement in tuning frequency control. Because this oscillator is guaranteed stable, and can be dynamically tuned, it's definitely worth considering for realvalued as well as quadrature oscillator applications[77].
URL http://proquest.safaribooksonline.com/0131089897/ch13lev1sec32
Amazon  


