Higher-level packets and some large management frames may need to be broken into smaller pieces to fit through the wireless channel. Fragmentation may also help improve reliability in the presence of interference. Wireless LAN stations may attempt to fragment transmissions so that interference affects only small fragments, not large frames. By immediately reducing the amount of data that can be corrupted by interference, fragmentation may result in a higher effective throughput. Interference may come from a variety of sources. Some, but by no means all, microwave ovens cause interference with 2.4 GHz networks.[*] Electromagnetic radiation is generated by the magnetron tube during its ramp-up and ramp-down, so microwaves emit interference half the time. Many newer cordless phones also cause interference.[] Outdoor networks are subject to a much wider variety of interference.
[images/ent/U2020.GIF border=0>] If you need to use a cordless phone in the same area as a wireless LAN, I suggest purchasing a 900 MHz cordless phone on eBay.
Wireless LAN stations may attempt to fragment transmissions so that interference affects only small fragments, not large frames. By immediately reducing the amount
of data that can be corrupted by interference, fragmentation may result in a higher effective throughput. Fragmentation takes place when the length of a higher-level packet exceeds the fragmentation threshold configured by the network administrator. Fragments all have the same frame sequence number but have ascending fragment numbers to aid in reassembly. Frame control information also indicates whether more fragments are coming. All of the fragments that comprise a frame are normally sent in a fragmentation burst, which is shown in Figure 3-8. This figure also incorporates an RTS/CTS exchange, because it is common for the fragmentation and RTS/CTS thresholds to be set to the same value. The figure also shows how the NAV and SIFS are used in combination to control access to the medium.
Figure 3-8. Fragmentation burst
Fragments and their acknowledgments are separated by the SIFS, so a station retains control of the channel during a fragmentation burst. The NAV is also used to ensure that other stations do not use the channel during the fragmentation burst. As with any RTS/CTS exchange, the RTS and CTS both set the NAV from the expected time to the end of the first fragments in the air. Subsequent fragments then form a chain. Each fragment sets the NAV to hold the medium until the end of the acknowledgment for the next frame. Fragment 0 sets the NAV to hold the medium until ACK 1, fragment 1 sets the NAV to hold the medium until ACK 2, and so on. After the last fragment and its acknowledgment have been sent, the NAV is set to 0, indicating that the medium will be released after the fragmentation burst completes.
Introduction to Wireless Networking
Overview of 802.11 Networks
11 MAC Fundamentals
11 Framing in Detail
Wired Equivalent Privacy (WEP)
User Authentication with 802.1X
11i: Robust Security Networks, TKIP, and CCMP
Management Operations
Contention-Free Service with the PCF
Physical Layer Overview
The Frequency-Hopping (FH) PHY
The Direct Sequence PHYs: DSSS and HR/DSSS (802.11b)
11a and 802.11j: 5-GHz OFDM PHY
11g: The Extended-Rate PHY (ERP)
A Peek Ahead at 802.11n: MIMO-OFDM
11 Hardware
Using 802.11 on Windows
11 on the Macintosh
Using 802.11 on Linux
Using 802.11 Access Points
Logical Wireless Network Architecture
Security Architecture
Site Planning and Project Management
11 Network Analysis
11 Performance Tuning
Conclusions and Predictions