The answer is shown in Figure 3.16.
The answer is shown in Figure 3.17.
The answer is shown in Figure 3.18.
135 °
60 °
72 °
0.7071
“0.5736
“0.7002
sin a = = 0.28, cos a = = 0.96, tan a = = 0.29
a = 16.26 °
“1.4281
2.9238
1.4142
per = 120 °, amp = 5
per = 360 °, amp = 3
per = 90 °, amp = 1
per = 360 °, amp = 5
per = 720 °, amp = 2
per = 180 °, amp = ½
sin(180 °) = 0 and cos(180 °) = “1
sin 2 (180 °) + cos 2 (180 °) = 0 2 + ( “1) 2 = 1, so it is true for 180 °.
tan(30 °) = sin(30 °)/cos(30 °) = 0.5/0.8660 = 0.5774
sin(2 a ) = sin( a + a ) = sin a cos a + cos a sin a
cos(2 a ) = cos a cos a “ sin a sin a = cos 2 ( a ) “ sin 2 ( a )
Use the sum identity for sine:
sin(90 °+30 °) = sin90 °cos 30 ° + cos90 °sin 30 ° = cos 30 ° + 0 = 0.8660