< Day Day Up > 

Aigner, D. J. & Chu, S.F. (1968). On Estimating the Industry Production Function. American Economic Review, 58, 826–839.

Aigner, D. J.,Lovell, C.A.K., & Schmidt, P. (1977). Formulation and Estimation of Stochastic Frontier Production Function Models. Journal of Econometrics, 6, 21–37.

Coelli, T.,Prasada Rao, D. S., & Battese, G. E. (1998). An Introduction to Efficiency and Productivity Analysis. Boston, MA: Kluwer Academic.

Madansky, A. (1988). Prescriptions for Working Statisticians. New York: Springer-Verlag.

Meeusen, W. & van den Broeck, J. (1977). Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error. International Economic Review, 8, 435–444.

Ritter, C. & Léopold, S. (1997). Pitfalls of Normal-Gamma Stochastic Frontier Models. Journal of Productivity Analysis, 8, 167–182.

Stevenson, R. E. (1980). Likelihood Functions for Generalized Stochastic Frontier Estimation. Journal of Econometrics, 13, 57–66.

Troutt, M. D.,Gribbin, D. W.,Shanker, M., & Zhang, A. (2000). Cost Efficiency Benchmarking for Operational Units with Multiple Cost Drivers. Decision Sciences, 31(4), 813–832.

Troutt, M. D.,Hu, M., & Shanker, M. (2001). Unbounded Likelihood in Stochastic Frontier Estimation: Signal-To-Noise Ratio-Based Alternatives. Working paper. (Kent, OH: Kent State University, Department of Management& Information Systems).

 < Day Day Up > 

Managing Data Mining Technologies in Organizations(c) Techniques and Applications
Managing Data Mining Technologies in Organizations: Techniques and Applications
ISBN: 1591400570
EAN: 2147483647
Year: 2003
Pages: 174 © 2008-2017.
If you may any questions please contact us: