Chapter 8: Parallel Programming with MPI


William Gropp and Ewing Lusk

Chapter 7 described how parallel computation on a Beowulf is accomplished by dividing a computation into parts, making use of multiple processes and executing each on a separate processor. Sometimes an ordinary program can be used by all the processes, but with distinct input files or parameters. In such a situation, no communication occurs among the separate tasks. When the power of a parallel computer is needed to attack a large problem with a more complex structure, however, such communication is necessary.

One of the most straightforward approaches to communication is to have the processes coordinate their activities by sending and receiving messages, much as a group of people might cooperate to perform a complex task. This approach to achieving parallelism is called message passing.

In this chapter and the next, we show how to write parallel programs using MPI, the Message Passing Interface. MPI is a message-passing library specification. All three parts of the following description are significant.

  • MPI addresses the message-passing model of parallel computation, in which processes with separate address spaces synchronize with one another and move data from the address space of one process to that of another by sending and receiving messages. [1]

  • MPI specifies a library interface, that is, a collection of subroutines and their arguments. It is not a language; rather, MPI routines are called from programs written in conventional languages such as Fortran, C, and C++.

  • MPI is a specification, not a particular implementation. The specification was created by the MPI Forum, a group of parallel computer vendors, computer scientists, and users who came together to cooperatively work out a community standard. The first phase of meetings resulted in a release of the standard in 1994 that is sometimes referred to as MPI-1. Once the standard was implemented and in wide use a second series of meetings resulted in a set of extensions, referred to as MPI-2. MPI refers to both MPI-1 and MPI-2.

As a specification, MPI is defined by a standards document, the way C, Fortran, or POSIX are defined. The MPI standards documents are available at and may be freely downloaded. The MPI-1 and MPI-2 standards are available as journal issues [72, 73] and in annotated form as books in this series [105, 46]. Implementations of MPI are available for almost all parallel computers, from clusters to the largest and most powerful parallel computers in the world. In Section 8.9 we summarizes the most popular cluster implementations.

A goal of the MPI Forum was to create a powerful, flexible library that could be implemented efficiently on the largest computers and provide a tool to attack the most difficult problems in parallel computing. It does not always do the simplest tasks in the simplest way but comes into its own as more complex functionality is needed. As a result, many tools and libraries have been built on top of MPI (see Table 9.1 and Chapter 12). To get the flavor of MPI programming, in this chapter and the next we work through a set of examples, starting with the simplest.

[1]Processes may be single threaded, with one program counter, or multithreaded, with multiple program counters. MPI is for communication among processes rather than threads. Signal handlers can be thought of as executing in a separate thread.

Beowulf Cluster Computing With Linux 2003
Beowulf Cluster Computing With Linux 2003
Year: 2005
Pages: 198 © 2008-2017.
If you may any questions please contact us: