Web Services Building Blocks

Web Services Design Decisions

Let's discuss some of the design decisions behind these building blocks for Web services.

Choosing Transport Protocols

The first step was to determine how the client and the server would communicate with each other. The client and the server can reside on the same LAN, but the client might potentially communicate with the server over the Internet. Therefore, the transport protocol must be equally suited to LAN environments and the Internet.

As I mentioned earlier, technologies such as DCOM, CORBA, and Java RMI are ill suited for supporting communication between the client and the server over the Internet. Protocols such as Hypertext Transfer Protocol (HTTP) and Simple Mail Transfer Protocol (SMTP) are proven Internet protocols. HTTP defines a request/response messaging pattern for submitting a request and getting an associated response. SMTP defines a routable messaging protocol for asynchronous communication. Let's examine why HTTP and SMTP are well suited for the Internet.

HTTP-based Web applications are inherently stateless. They do not rely on a continuous connection between the client and the server. This makes HTTP an ideal protocol for high-availability configurations such as firewalls. If the server that handled the client's original request becomes unavailable, subsequent requests can be automatically routed to another server without the client knowing or caring.

Almost all companies have an infrastructure in place that supports SMTP. SMTP is well suited for asynchronous communication. If service is disrupted, the e-mail infrastructure automatically handles retries. Unlike with HTTP, you can pass SMTP messages to a local mail server that will attempt to deliver the mail message on your behalf.

The other significant advantage of both HTTP and SMTP is their pervasiveness. Employees have come to rely on both e-mail and their Web browsers, and network administrators have a high comfort level supporting these services. Technologies such as network address translation (NAT) and proxy servers provide a way to access the Internet via HTTP from within otherwise isolated corporate LANs. Administrators will often expose an SMTP server that resides inside the firewall. Messages posted to this server will then be routed to their final destination via the Internet.

In the case of credit card processing software, an immediate response is needed from the merchant bank to determine whether the order should be submitted to the ERP system. HTTP, with its request/response message pattern, is well suited to this task.

Most ERP software packages are not capable of handling large volumes of orders that can potentially be driven from the e-commerce application. In addition, it is not imperative that the orders be submitted to the ERP system in real time. Therefore, SMTP can be leveraged to queue orders so that they can be processed serially by the ERP system.

If the ERP system supports distributed transactions, another option is to leverage Microsoft Message Queue Server (MSMQ). As long as the e-commerce application and the ERP system reside within the same LAN, connectivity via non-Internet protocols is less of an issue. The advantage MSMQ has over SMTP is that messages can be placed and removed from the queue within the scope of a transaction. If an attempt to process a message that was pulled off the queue fails, the message will automatically be placed back in the queue when the transaction aborts.

Choosing an Encoding Scheme

HTTP and SMTP provide a means of sending data between the client and the server. However, neither specifies how the data within the body of the message should be encoded. Microsoft needed a standard, platform-neutral way to encode data exchanged between the client and the server.

Because the goal was to leverage Internet-based protocols, Extensible Markup Language (XML) was the natural choice. XML offers many advantages, including cross-platform support, a common type system, and support for industry-standard character sets.

Binary encoding schemes such as those used by DCOM, CORBA, and Java RMI must address compatibility issues between different hardware platforms. For example, different hardware platforms have different internal binary representation of multi-byte numbers. Intel platforms order the bytes of a multi-byte number using the little endian convention; many RISC processors order the bytes of a multi-byte number using the big endian convention.

XML avoids binary encoding issues because it uses a text-based encoding scheme that leverages standard character sets. Also, some transport protocols, such as SMTP, can contain only text-based messages.

Binary methods of encoding, such as those used by DCOM and CORBA, are cumbersome and require a supporting infrastructure to abstract the developer from the details. XML is much lighter weight and easier to handle because it can be created and consumed using standard text-parsing techniques.

In addition, a variety of XML parsers are available to further simplify the creation and consumption of XML documents on practically every modern platform. XML is lightweight and has excellent tool support, so XML encoding allows incredible reach because practically any client on any platform can communicate with your Web service.

Choosing a Formatting Convention

It is often necessary to include additional metadata with the body of the message. For example, you might want to include information about the type of services that a Web service needs to provide in order to fulfill your request, such as enlisting in a transaction or routing information. XML provides no mechanism for differentiating the body of the message from its associated data.

Transport protocols such as HTTP provide an extensible mechanism for header data, but some data associated with the message might not be specific to the transport protocol. For example, the client might send a message that needs to be routed to multiple destinations, potentially over different transport protocols. If the routing information were placed into an HTTP header, it would have to be translated before being sent to the next intermediary over another transport protocol, such as SMTP. Because the routing information is specific to the message and not the transport protocol, it should be a part of the message.

Simple Object Access Protocol (SOAP) provides a protocol-agnostic means of associating header information with the body of the message. Every SOAP message must define an envelope. The envelope has a body that contains the payload of the message and a header that can contain metadata associated with the message.

SOAP imposes no restrictions on how the message body can be formatted. This is a potential concern because without a consistent way of encoding the data, it is difficult to develop a toolset that abstracts you from the underlying protocols. You might have to spend a fair amount of time getting up to speed on the Web service's interface instead of solving the business problem at hand.

What was needed was a standard way of formatting a remote procedure call (RPC) message and encoding its list of parameters. This is exactly what Section 7 of the SOAP specification provides. It describes a standard naming convention and encoding style for procedure-oriented messages. I will discuss SOAP in more detail in Chapter 3.

Because SOAP provides a standard format for serializing data into an XML message, platforms such as ASP.NET and Remoting can abstract away the details for you. In the next chapter, I will show how to create and consume two Web services for which knowledge of SOAP is not required.

Choosing Description Mechanisms

SOAP provides a standard way of formatting messages exchanged between the Web service and the client. However, the client needs additional information in order to properly serialize the request and interpret the response. XML Schema provides a means of creating schemas that can be used to describe the contents of a message.

XML Schema provides a core set of built-in datatypes that can be used to describe the contents of a message. You can also create your own datatypes. For example, the merchant bank can create a complex datatype to describe the content and structure of the body of a message used to submit a credit card payment request.

A schema contains a set of datatype and element definitions. A Web service uses the schema not only to communicate the type of data that is expected to be within a message but also to validate incoming and outgoing messages.

A schema alone does not provide enough information to effectively describe a Web service, however. The schema does not describe the message patterns between the client and the server. For example, a client needs to know whether to expect a response when an order is posted to the ERP system. A client also needs to know over what transport protocol the Web service expects to receive requests. Finally, the client needs to know the address where the Web service can be reached.

This information is provided by a Web Services Description Language (WSDL) document. WSDL is an XML document that fully describes a particular Web service. Tools such as ASP.NET WSDL.exe and Remoting SOAPSUDS.exe can consume WSDL and automatically build proxies for the developer.

As with any component used to build software, a Web service should also be accompanied by written documentation for developers who program against the Web service. The documentation should describe what the Web service does, the interfaces it exposes, and some examples of how to use it. Good documentation is especially important if the Web service is exposed to clients over the Internet.

Choosing Discovery Mechanisms

Once you've developed and documented a Web service, how can potential clients locate it? If the Web service is designed to be consumed by a member of your development team, your approach can be pretty informal, such as sharing the URL of the WSDL document with your peer a couple of cubicles down. But when potential clients are on the Internet, advertising your Web service effectively is an entirely different story.

What's needed is a common way to advertise Web services. Universal Description, Discovery, and Integration (UDDI) provides just such a mechanism. UDDI is an industry-standard centralized directory service that can be used to advertise and locate Web services. UDDI allows users to search for Web services using a host of search criteria, including company name, category, and type of Web service.

Web services can also be advertised via DISCO, a proprietary XML document format defined by Microsoft that allows Web sites to advertise the services they expose. DISCO defines a simple protocol for facilitating a hyperlink style for locating resources. The primary consumer of DISCO is Microsoft Visual Studio .NET. A developer can target a particular Web server and navigate through the various Web services exposed by the server.



Building XML Web Services for the Microsoft  .NET Platform
Building XML Web Services for the Microsoft .NET Platform
ISBN: 0735614067
EAN: 2147483647
Year: 2002
Pages: 94
Authors: Scott Short

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net