Bridges are used to divide larger networks into smaller sections. They do this by sitting between two physical network segments and managing the flow of data between the two. By looking at the MAC address of the devices connected to each segment, bridges can elect to forward the data (if they believe that the destination address is on another interface), or block it from crossing (if they can verify that it is on the interface from which it came). Figure 3.4 shows how a bridge can be used to segregate a network. Figure 3.4. How a bridge is used to segregate networks.
When bridges were introduced, the MAC addresses of the devices on the connected networks had to be entered manually, a time-consuming process that had plenty of opportunity for error. Today, almost all bridges can build a list of the MAC addresses on an interface by watching the traffic on the network. Such devices are called learning bridges because of this functionality. Bridge Placement and Bridging LoopsThere are two issues that you must consider when using bridges. The first is the bridge placement, and the other is the elimination of bridging loops:
Types of BridgesThree types of bridges are used in networks:
Today, bridges are slowly but surely falling out of favor. Ethernet switches offer similar functionality; they can provide logical divisions, or segments, in the network. In fact, switches are sometimes referred to as multiport bridges because of the way they operate. |