Intel and AMD Processor Configurations


The following sections provide detailed information on x86 and Itanium processors used in servers. You can use these sections to help plan upgrades, determine which servers are most suitable for a particular task, decide which servers may need to be retired, and plan your next server purchase or server building project.

For detailed information on other forms of RISC-based processors used in servers, see "RISC-Based Server Processors," p. 130.


Pentium Pro Processors

The Pentium Pro, which was introduced in November) 1995 and became widely available in 1996, was the first x86 processor developed primarily for use as a server processor. Because it was optimized for 32-bit processing, it actually performed more slowly than the existing Pentium when running 16-bit applications. In addition to single-processor designs, various vendors developed two-way, four-way, and eight-way configurations. As Table 2.16 indicates, the Pentium Pro processor was available with 256KB, 512KB, or 1MB of full-speed L2 cache. The larger cache sizes were favored for server applications.

Table 2.16. Pentium Pro General Specifications

Introduction date

November 1995

Maximum rated speeds

150MHz, 166MHz, 180MHz, 200MHz

CPU

2.5x, 3x

Internal registers

32-bit

External data bus

64-bit

Memory address bus

36-bit

Addressable memory

64GB

Virtual memory

64TB

Integral L1 cache size

8KB code, 8KB data (16KB total)

Integrated L2 cache bus

64-bit, full-core speed

Socket/Slot

Socket 8

Physical package

387-pin dual cavity PGA

Package dimensions

2.46 (6.25cm)x2.66 (6.76cm)

Math coprocessor

Built-in FPU

Power management

System Management Mode (SMM)

Operating voltage

3.1V or 3.3V


Table 2.16 lists the general specifications for various models of the Pentium Pro. Table 2.17 lists specifications by processor model.

Table 2.17. Pentium Pro Processor Specifications, by Processor Model

Pentium Pro Processor (200MHz) with 1MB Integrated Level 2 Cache

Introduction date

August 18, 1997

Clock speed

200MHz

FSB speed

66MHz

CPU clock ratio

3x

Number of transistors

5.5 million (0.35-micron process), plus 62 million in 1MB L2 cache (0.35-micron)

Cache memory

8Kx2 (16KB) L1, 1MB core-speed L2

Die size

0.552 (14.0mm)

Pentium Pro Processor (200MHz)

Introduction date

November 1, 1995

Clock speed

200MHz

FSB speed

66MHz

CPU clock ratio

3x

Number of transistors

5.5 million (0.35-micron process), plus 15.5 million in 256KB L2 cache (0.6-micron), or 31 million in 512KB L2 cache (0.35-micron)

Cache memory

8Kx2 (16KB) L1, 256KB or 512KB core-speed L2

Die size

0.552 inch per side (14.0mm)

Pentium Pro Processor (180MHz)

Introduction date

November 1, 1995

Clock speed

180MHz

FSB speed

60MHz

CPU clock ratio

3x

Number of transistors

5.5 million (0.35-micron process), plus 15.5 million in 256KB L2 cache (0.6-micron)

Cache memory

8Kx2 (16KB) L1, 256KB core-speed L2

Die size

0.552 inch per side (14.0mm)

Pentium Pro Processor (166MHz)

Introduction date

November 1, 1995

Clock speed

166MHz

FSB speed

66MHz

CPU clock ratio

2.5x

Number of transistors

5.5 million (0.35-micron process), plus 31 million in 512KB L2 cache (0.35-micron)

Cache memory

8Kx2 L1, 512KB core-speed L2

Die size

0.552 inch per side (14.0mm)

Pentium Pro Processor (150MHz)

Introduction date

November 1, 1995

Clock speed

150MHz

FSB speed

60MHz

CPU clock ratio

2.5x

Number of transistors

5.5 million (0.6-micron process), plus 15.5 million in 256KB L2 cache (0.6-micron)

Cache memory

8Kx2 speed L2

Die size

0.691 inch per side (17.6mm)


Figure 2.36 shows the underside of the Pentium Pro processor with 256KB of L2 cache, and Figure 2.37 shows the underside of the Pentium Pro processor with 1MB of L2 cache.

Figure 2.36. Pentium Pro processor with 256KB L2 cache; the cache is on the left side of the processor die. (Photograph used by permission of Intel Corporation.)


Figure 2.37. Pentium Pro processor with 1MB L2 cache; the cache is in the center and right portions of the die. (Photograph used by permission of Intel Corporation.)


The main processor die includes a 16KB split L1 cache with an 8KB two-way set-associative cache for primary instructions and an 8KB four-way set-associative cache for data. The Pentium Pro introduced the DIB architecture used in subsequent processors from Intel and AMD. Two buses made up the DIB architecture: the L2 cache bus (contained entirely within the processor package) and the processor-to-main memory system bus. The speed of the dedicated L2 cache bus on the Pentium Pro was equal to the full-core speed of the processor. This was accomplished by embedding the cache chips directly into the Pentium Pro package, as shown in Figures 2.36 and 2.37. The DIB processor bus architecture addressed processor-to-memory bus bandwidth limitations. It offered up to three times the performance bandwidth of the single-bus, "Socket 7"generation processors, such as the Pentium.

Pentium II Processors

The Pentium II processor, introduced in May 1997, was designed, in part, as a lower-cost follow-up to the Pentium Pro. Instead of using expensive on-die full-speed L2 cache, as in the Pentium Pro, the Pentium II's 512KB of L2 cache is off-die, attached to the processor assembly, and runs at half the processor's core speed. Because the Pentium II was aimed primarily at the desktop processor market, it was not designed to scale above a two-way configuration. The Pentium II Xeon was used for more powerful server configurations. However, many two-way Pentium II servers were built for entry-level tasks. The Pentium II uses Slot 1, rather than Socket 8, as was used by the Pentium Pro.

Although the Pentium II was suitable for use in single- or dual-processor server configurations, some versions were better optimized for this task than others. Table 2.18 lists only the Pentium II processor versions that can cache up to 4GB of RAM and support ECC L2 cache. Versions that cache only 512MB of RAM drop in performance if more than 512MB of RAM is installed, and versions that lack ECC support in L2 cache might cache corrupt memory contents, causing system errors or a system crash when cache memory is accessed.

Table 2.18. Pentium II Processor Identification Information[1]

S-Spec

Core Stepping

CPUID Bus Speed

Core/Cache Size (MHz)

L2 Cache Type (MB)

L2 Package

CPU

SL35V[2],[3]

dA1

0651h

300/66

512

ECC

SECC 3.00

SL2QH[2],[3]

dA1

0651h

333/66

512

ECC

SECC 3.00

SL2S5[3],[5]

dA1

0651h

333/66

512

ECC

SECC 3.00

SL2ZP[3],[5]

dA1

0651h

333/66

512

ECC

SECC 3.00

SL2ZQ[3],[5]

dA1

0651h

350/100

512

ECC

SECC 3.00

SL2S6[3],[5]

dA1

0651h

350/100

512

ECC

SECC 3.00

SL2S7[3],[5]

dA1

0651h

400/100

512

ECC

SECC 3.00

SL2SF[2],[3]

dA1

0651h

350/100

512

ECC

SECC 3.00

SL2SH[2],[3]

dA1

0651h

400/100

512

ECC

SECC 3.00

SL2VY[2],[3]

dA1

0651h

300/66

512

ECC

SECC 3.00

SL33D[2],[3]

dB0

0652h

266/66

512

ECC

SECC 3.00

SL2YK[2],[3],[5]

dB0

0652h

300/66

512

ECC

SECC 3.00

SL2WZ[2],[3],[5]

dB0

0652h

350/100

512

ECC

SECC 3.00

SL2YM[2],[3],[5]

dB0

0652h

400/100

512

ECC

SECC 3.00

SL37G[2],[3],[4]

dB0

0652h

400/100

512

ECC

SECC2 OLGA

SL2WB[2],[3],[5]

dB0

0652h

450/100

512

ECC

SECC 3.00

SL37H[2],[3]

dB0

0652h

450/100

512

ECC

SECC2 OLGA

SL2W7[3],[5]

dB0

0652h

266/66

512

ECC

SECC 2.00

SL2W8[3],[5]

dB0

0652h

300/66

512

ECC

SECC 3.00

SL2TV[3],[5]

dB0

0652h

333/66

512

ECC

SECC 3.00

SL2U3[3],[5]

dB0

0652h

350/100

512

ECC

SECC 3.00

SL2U4[3],[5]

dB0

0652h

350/100

512

ECC

SECC 3.00

SL2U5[3],[5]

dB0

0652h

400/100

512

ECC

SECC 3.00

SL2U6[3],[5]

dB0

0652h

400/100

512

ECC

SECC 3.00

SL2U7[3],[5]

dB0

0652h

450/100

512

ECC

SECC 3.00

SL356[3],[5]

dB0

0652h

350/100

512

ECC

SECC2 PLGA

SL357[3],[5]

dB0

0652h

400/100

512

ECC

SECC2 OLGA

SL358[3],[5]

dB0

0652h

450/100

512

ECC

SECC2 OLGA

SL37F[2],[3],[5]

dB0

0652h

350/100

512

ECC

SECC2 PLGA

SL3FN[3],[5]

dB0

0652h

350/100

512

ECC

SECC2 OLGA

SL3EE[3],[5]

dB0

0652h

400/100

512

ECC

SECC2 PLGA

SL3F9[2],[3]

dB0

0652h

400/100

512

ECC

SECC2 PLGA

SL38M[2],[3],[5]

dB1

0653h

350/100

512

ECC

SECC 3.00

SL38N[2],[3],[5]

dB1

0653h

400/100

512

ECC

SECC 3.00

SL36U[3],[5]

dB1

0653h

350/100

512

ECC

SECC 3.00

SL38Z[3],[5]

dB1

0653h

400/100

512

ECC

SECC 3.00

SL3D5[2],[3]

dB1

0653h

400/100

512

ECC

SECC2 OLGA


[1] Key: CPUID = the internal ID returned by the CPUID instruction; ECC = error correcting code; OLGA = organic land grid array; PLGA = plastic land grid array; SECC = single-edge contact cartridge; and SECC2 = single-edge contact cartridge, revision 2.

[2] This is a boxed Pentium II processor with an attached fan heatsink.

[3] This processor has an enhanced L2 cache, which can cache up to 4GB of main memory. Other standard PII processors can cache only up to 512MB of main memory.

[5] This part operates only at the specified clock multiplier frequency ratio at which it was manufactured. It can be overclocked only by increasing the bus speed.

[4] This is a boxed Pentium II OverDrive processor with an attached fan heatsink, designed for upgrading Pentium Pro (Socket 8) systems.

See "Single-Edge Contact Cartridge Packaging," p. 67, for processor package and slot details and pictures.


Pentium II Xeon

The Pentium II Xeon, introduced in June 1998, is an advanced version of the Pentium II that was designed to support up to eight-way operation, featuring larger and faster L2 cache than the standard Pentium II. The Pentium II Xeon uses Slot 2, rather than Slot 1, as with the Pentium II.

See "Single-Edge Contact Cartridge Packaging," p. 67, for processor package and slot details and pictures.


The Pentium II Xeon processors were produced in four variationswith 256KB, 512KB, 1MB, or 2MB of L2 cache. Even more significant than the size of the cache is its speed. All the cache memory in the Pentium II Xeon processors runs at the full-core speed. This is difficult to do, considering that the cache chips are separate chips on the board in Slot 2based versions. The original Pentium II Xeon processors had 7.5 million transistors in the main processor die. The L2 cache in all Pentium II Xeon processors has a full 64GB RAM address range and supports ECC.

Table 2.19 provides the specifications of the Pentium II Xeon.

Table 2.19. Pentium II Xeon Specifications

S-Spec

Core Steppings

CPUID

Core Speed (MHz)

Bus Speed (MHz)

L2 Cache Size (KB)

SL2RH

B0

0652h

400

100

512

SL344

B0

0652h

400

100

512

SL2NB

B0

0652h

400

100

1024

SL345

B0

0652h

400

100

1024

SL34H

B1

0653h

400

100

512

SL35N

B1

0653h

400

100

512

SL35P

B1

0653h

400

100

1024

SL34J

B1

0653h

400

100

1024

SL354[1]

B1

0653h

450

100

512

SL36W[1]

B1

0653h

450

100

512

SL2XJ[1]

B1

0653h

450

100

512

SL33T[1]

B1

0653h

450

100

512

SL33U[1]

B1

0653h

450

100

1024

SL2XK[1]

B1

0653h

450

100

1024

SL2XL[1]

B1

0653h

450

100

2048

SL33V[1]

B1

0653h

450

100

2048


[1] Error checking and correcting (ECC) for the L2 cache transactions cannot be disabled on these processors.

Pentium III Processors

The Pentium III processor, introduced in 1999, is an improved version of the Pentium II processor, supporting higher clock speeds and higher memory speeds. Early versions of the Pentium III used the same SECC2 cartridge packaging and Slot 1 connector used by the Pentium II.

See "Single-Edge Contact Cartridge Packaging," p. 67, for processor package and slot details and pictures.


Later versions of the Pentium III switched to an FC-PGA packaging compatible with Socket 370 (a development of the socket design originally created for use with the Celeron).

All versions of the Pentium III that contain 512KB of L2 cache can be used in multiple-processor configurations. However, late releases of the Pentium III that use the .13-micron process with 256KB of L2 cache onboard (code-named Tualatin) are not compatible with multiple-processor configurations. Pentium IIIbased servers are configured as single-processor or two-way systems.

Note

Although a few servers with four physical Pentium III processors onboard exist, such as the NEC Express5800 320La, these systems use the third and fourth processors as redundant spares for the first two processors.


Table 2.20 lists the technical specifications for the various models of the Pentium III processor.

Table 2.20. Intel Pentium III Processor Variations[1]

Speed (MHz)

Bus Speed (MHz)

Multiplier

Boxed CPU S-Spec

OEM CPU S-Spec

Stepping

CPUID

L2 Cache

L2 Speed

Max. Temp. (C)

Voltage

Max. Power (W)

Process (Microns)

Transistors

Package

450

100

4.5x

SL3CC

SL364

kB0

0672

512K

225

90

2.00

25.3

0.25

9.5M

SECC2

450

100

4.5x

SL37C

SL35D

kC0

0673

512K

225

90

2.00

25.3

0.25

9.5M

SECC2

500

100

5x

SL3CD

SL365

kB0

0672

512K

250

90

2.00

28.0

0.25

9.5M

SECC2

500

100

5x

SL365

SL365

kB0

0672

512K

250

90

2.00

28.0

0.25

9.5M

SECC2

500

100

5x

SL37D

SL35E

kC0

0673

512K

250

90

2.00

28.0

0.25

9.5M

SECC2

500E

100

5x

SL3R2

SL3Q9

cA2

0681

256K

500

85

1.60

13.2

0.18

28.1M

FC-PGA

500E

100

5x

SL45R

SL444

cB0

0683

256K

500

85

1.60

13.2

0.18

28.1M

FC-PGA

533B

133

4x

SL3E9

SL3BN

kC0

0673

512K

267

90

2.05

29.7

0.25

9.5M

SECC2

533EB

133

4x

SL3SX

SL3N6

cA2

0681

256K

533

85

1.65

14.0

0.18

28.1M

SECC2

533EB

133

4x

SL3VA

SL3VF

cA2

0681

256K

533

85

1.65

14.0

0.18

28.1M

FC-PGA

533EB

133

4x

SL44W

SL3XG

cB0

0683

256K

533

85

1.65

14.0

0.18

28.1M

SECC2

533EB

133

4x

SL45S

SL3XS

cB0

0683

256K

533

85

1.65

14.0

0.18

28.1M

FC-PGA

550

100

5.5x

SL3FJ

SL3F7

kC0

0673

512K

275

80

2.00

30.8

0.25

9.5M

SECC2

550E

100

5.5x

SL3R3

SL3QA

cA2

0681

256K

550

85

1.60

14.5

0.18

28.1M

FC-PGA

550E

100

5.5x

SL3V5

SL3N7

cA2

0681

256K

550

85

1.60

14.5

0.18

28.1M

SECC2

550E

100

5.5x

SL44X

SL3XH

cB0

0683

256K

550

85

1.60

14.5

0.18

28.1M

SECC2

550E

100

5.5x

SL45T

N/A

cB0

0683

256K

550

85

1.60

14.5

0.18

28.1M

FC-PGA

600

100

6x

SL3JT

SL3JM

kC0

0673

512K

300

85

2.00

34.5

0.25

9.5M

SECC2

600E

100

6x

SL3NA

SL3H6

cA2

0681

256K

600

82

1.65

15.8

0.18

28.1M

SECC2

600E

100

6x

SL3NL

SL3VH

cA2

0681

256K

600

82

1.65

15.8

0.18

28.1M

FC-PGA

600E

100

6x

SL44Y

SL43E

cB0

0683

256K

600

82

1.65

15.8

0.18

28.1M

SECC2

600E

100

6x

SL45U

SL3XU

cB0

0683

256K

600

82

1.65

15.8

0.18

28.1M

FC-PGA

600E

100

6x

N/A

SL4CM

cC0

0686

256K

600

82

1.7

15.8

0.18

28.1M

FC-PGA

600E

100

6x

N/A

SL4C7

cC0

0686

256K

600

82

1.7

15.8

0.18

28.1M

SECC2

600B

133

4.5x

SL3JU

SL3JP

kC0

0673

512K

300

85

2.05

34.5

0.25

9.5M

SECC2

600EB

133

4.5x

SL3NB

SL3H7

cA2

0681

256K

600

82

1.65

15.8

0.18

28.1M

SECC2

600EB

133

4.5x

SL3VB

SL3VG

cA2

0681

256K

600

82

1.65

15.8

0.18

28.1M

FC-PGA

600EB

133

4.5x

SL44Z

SL3XJ

cB0

0683

256K

600

82

1.65

15.8

0.18

28.1M

SECC2

600EB

133

4.5x

SL45V

SL3XT

cB0

0683

256K

600

82

1.65

15.8

0.18

28.1M

FC-PGA

600EB

133

4.5x

SL4CL

SL4CL

cC0

0686

256K

600

82

1.7

15.8

0.18

28.1M

FC-PGA

600EB

133

4.5x

N/A

SL46C

cC0

0686

256K

600

82

1.7

15.8

0.18

28.1M

SECC2

650

100

6.5x

SL3NR

SL3KV

cA2

0681

256K

650

82

1.65

17.0

0.18

28.1M

SECC2

650

100

6.5x

SL3NM

SL3VJ

cA20

681

256K

650

82

1.65

17.0

0.18

28.1M

FC-PGA

650

100

6.5x

SL452

SL3XK

cB0

0683

256K

650

82

1.65

17.0

0.18

28.1M

SECC2

650

100

6.5x

SL45W

SL3XV

cB0

0683

256K

650

82

1.65

17.0

0.18

28.1M

FC-PGA

650

100

6.5x

N/A

SL4CK

cC0

0686

256K

650

82

1.7

17.0

0.18

28.1M

FC-PGA

650

100

6.5x

N/A

SL4C5

cC0

0686

256K

650

82

1.7

17.0

0.18

28.1M

SECC2

667

133

5x

SL3ND

SL3KW

cA2

0681

256K

667

82

1.65

17.5

0.18

28.1M

SECC2

667

133

5x

SL3T2

SL3VK

cA2

0681

256K

667

82

1.65

17.5

0.18

28.1M

FC-PGA

667

133

5x

SL453

SL3XL

cB0

0683

256K

667

82

1.65

17.5

0.18

28.1M

SECC2

667

133

5x

SL45X

SL3XW

cB0

0683

256K

667

82

1.65

17.5

0.18

28.1M

FC-PGA

667

133

5x

N/A

SL4CJ

cC0

0686

256K

667

82

1.7

17.5

0.18

28.1M

FC-PGA

667

133

5x

N/A

SL4C4

cC0

0686

256K

667

82

1.7

17.5

0.18

28.1M

SECC2

700

100

7x

SL3SY

SL3S9

cA2

0681

256K

700

80

1.65

18.3

0.18

28.1M

SECC2

700

100

7x

SL3T3

SL3VL

cA2

0681

256K

700

80

1.65

18.3

0.18

28.1M

FC-PGA

700

100

7x

SL454

SL453

cB0

0683

256K

700

80

1.65

18.3

0.18

28.1M

SECC2

700

100

7x

SL45Y

SL3XX

cB0

0683

256K

700

80

1.65

18.3

0.18

28.1M

FC-PGA

700

100

7x

SL4M7

SL4CH

cC0

0686

256K

700

80

1.7

18.3

0.18

28.1M

FC-PGA

700

100

7x

N/A

SL4C3

cC0

0686

256K

700

80

1.7

18.3

0.18

28.1M

SECC2

733

133

5.5x

SL3SZ

SL3SB

cA2

0681

256K

733

80

1.65

19.1

0.18

28.1M

SECC2

733

133

5.5x

SL3T4

SL3VM

cA2

0681

256K

733

80

1.65

19.1

0.18

28.1M

FC-PGA

733

133

5.5x

SL455

SL3XN

cB0

0683

256K

733

80

1.65

19.1

0.18

28.1M

SECC2

733

133

5.5x

SL45Z

SL3XY

cB0

0683

256K

733

80

1.65

19.1

0.18

28.1M

FC-PGA

733

133

5.5x

SL4M8

SL4CG

cC0

0686

256K

733

80

1.7

19.1

0.18

28.1M

FC-PGA

733

133

5.5x

SL4KD

SL4C2

cC0

0686

256K

733

80

1.7

19.1

0.18

28.1M

SECC2

733

133

5.5x

SL4FQ

SL4CX

cC0

0686

256K

733

80

1.7

19.1

0.18

28.1M

SECC2

750

100

7.5x

SL3V6

SL3WC

cA2

0681

256K

750

80

1.65

19.5

0.18

28.1M

SECC2

750

100

7.5x

SL3VC

SL3VN

cA2

0681

256K

750

80

1.65

19.5

0.18

28.1M

FC-PGA

750

100

7.5x

SL456

SL3XP

cB0

0683

256K

750

80

1.65

19.5

0.18

28.1M

SECC2

750

100

7.5x

SL462

SL3XZ

cB0

0683

256K

750

80

1.65

19.5

0.18

28.1M

FC-PGA

750

100

7.5x

SL4M9

SL4CF

cC0

0686

256K

750

80

1.7

19.5

0.18

28.1M

FC-PGA

750

100

7.5x

SL4KE

SL4BZ

cC0

0686

256K

750

80

1.7

19.5

0.18

28.1M

SECC2

800

100

8x

SL457

SL3XR

cB0

0683

256K

800

80

1.65

20.8

0.18

28.1M

SECC2

800

100

8x

SL463

SL3Y3

cB0

0683

256K

800

80

1.65

20.8

0.18

28.1M

FC-PGA

800

100

8x

SL4MA

SL4CE

cC0

0686

256K

800

80

1.7

20.8

0.18

28.1M

FC-PGA

800

100

8x

SL4KF

SL4BY

cC0

0686

256K

800

80

1.7

20.8

0.18

28.1M

SECC2

800EB

133

6x

SL458

SL3XQ

cB0

0683

256K

800

80

1.65

20.8

0.18

28.1M

SECC2

800EB

133

6x

SL464

SL3Y2

cB0

0683

256K

800

80

1.65

20.8

0.18

28.1M

FC-PGA

800EB

133

6x

SL4MB

SL4CD

cC0

0686

256K

800

80

1.7

20.8

0.18

28.1M

FC-PGA

800EB

133

6x

SL4G7

SL4XQ

cC0

0686

256K

800

80

1.7

20.8

0.18

28.1M

SECC2

800EB

133

6x

SL4KG

SL4BX

cC0

0686

256K

800

80

1.7

20.8

0.18

28.1M

SECC2

850

100

8.5x

SL47M

SL43F

cB0

0683

256K

850

80

1.65

22.5

0.18

28.1M

SECC2

850

100

8.5x

SL49G

SL43H

cB0

0683

256K

850

80

1.65

22.5

0.18

28.1M

FC-PGA

850

100

8.5x

SL4MC

SL4CC

cC0

0686

256K

850

80

1.7

22.5

0.18

28.1M

FC-PGA

850

100

8.5x

SL4KH

SL4BW

cC0

0686

256K

850

80

1.7

22.5

0.18

28.1M

SECC2

866

133

6.5x

SL47N

SL43G

cB0

0683

256K

866

80

1.65

22.9

0.18

28.1M

SECC2

866

133

6.5x

SL49H

SL43J

cB0

0683

256K

866

80

1.65

22.9

0.18

28.1M

FC-PGA

866

133

6.5x

SL4MD

SL4CB

cC0

0686

256K

866

80

1.7

22.5

0.18

28.1M

FC-PGA

866

133

6.5x

SL4KJ

SL4BV

cC0

0686

256K

866

80

1.7

22.5

0.18

28.1M

SECC2

866

133

6.5x

SL5B5

SL5QE

cD0

068A

256K

866

80

1.75

26.1

0.18

28.1M

FC-PGA

900

100

9x

N/A

SL4SD

cC0

0686

256K

900

75

1.7

23.2

0.18

28.1M

FC-PGA

933

133

7x

SL47Q

SL448

cB0

0683

256K

933

75

1.7

25.5

0.18

28.1M

SECC2

933

133

7x

SL49J

SL44J

cB0

0683

256K

933

75

1.7

24.5

0.18

28.1M

FC-PGA

933

133

7x

SL4ME

SL4C9

cC0

0686

256K

933

75

1.7

24.5

0.18

28.1M

FC-PGA

933

133

7x

SL4KK

SL4BT

cC0

0686

256K

933

75

1.7

25.5

0.18

28.1M

SECC2

933

133

7x

N/A

SL5QF

cD0

068A

256K

933

77

1.75

27.3

0.18

28.1M

FC-PGA

1000B

133

7.5x

SL4FP

SL48S

cB0

0683

256K

1000

70

1.7

26.1

0.18

28.1M

SECC2

1000B

133

7.5x

SL4C8

SL4C8

cC0

0686

256K

1000

70

1.7

26.1

0.18

28.1M

FC-PGA

1000B

133

7.5x

SL4MF

N/A

cC0

0686

256K

1000

70

1.7

26.1

0.18

28.1M

FC-PGA

1000

100

10x

SL4BR

SL4BR

cC0

0686

256K

1000

70

1.7

26.1

0.18

28.1M

SECC2

1000

100

10x

SL4KL

N/A

cC0

0686

256K

1000

70

1.7

26.1

0.18

28.1M

SECC2

1000B

133

7.5x

SL4BS

SL4BS

cC0

0686

256K

1000

70

1.7

26.1

0.18

28.1M

SECC2

1000B

100

10x

N/A

SL5QV

cD0

068A

256K

1000

75

1.75

29.0

0.18

28.1M

FC-PGA

1000B

133

7.5x

SL5DV

N/A

cD0

068A

256K

1000

75

1.75

29.0

0.18

28.1M

FC-PGA

1000B

133

7.5x

SL5B3

SL5B3

cD0

068A

256K

1000

75

1.75

29.0

0.18

28.1M

FC-PGA

1000B

133

7.5x

SL52R

SL52R

cD0

068A

256K

1000

75

1.75

29.0

0.18

28.1M

FC-PGA

1000B

133

7.5x

SL5FQ

N/A

cD0

068A

256K

1000

75

1.75

29.0

0.18

28.1M

FC-PGA

1100

100

11x

N/A

SL5QW

cD0

068A

256K

1100

77

1.75

33.0

0.18

28.1M

FC-PGA

1133

133

8.5x

SL5LT

N/A

tA1

06B1

256K

1133

69

1.475

29.1

0.13

44M

FC-PGA2

1133

133

8.5x

SL5GQ

SL5GQ

tA1

06B1

256K

1133

69

1.475

29.1

0.13

44M

FC-PGA2

1133-S

133

8.5x

SL5LV

N/A

tA1

06B1

512K

1133

69

1.45

27.9

0.13

44M

FC-PGA2

1133-S

133

8.5x

SL5PU

SL5PU

tA1

06B1

512K

1133

69

1.45

27.9

0.13

44M

FC-PGA2

1200

133

9x

SL5GN

SL5GN

tA1

06B1

256K

1200

69

1.475

29.9

0.13

44M

FC-PGA2

1200

133

9x

SL5PM

N/A

tA1

06B1

256K

1200

69

1.475

29.9

0.13

44M

FC-PGA2

1266-S

133

9.5x

SL5LW

SL5QL

tA1

06B1

512K

1266

69

1.45

29.5

0.13

44M

FC-PGA2

1333

133

10x

N/A

SL5VX

tA1

06B1

256K

1333

69

1.475

29.9

0.13

44M

FC-PGA2

1400-S

133

10.5x

SL657

SL5XL

tA1

06B1

512K

1400

69

1.45

29.9

0.13

44M

FC-PGA2


[1] Key: CPUID = the internal ID returned by the CPUID instruction; ECC = error correcting code; FC-PGA = flip-chip pin grid array; FC-PGA2 = flip-chip pin grid array, revision 2; SECC = single-edge contact cartridge; and SECC2 = single-edge contact cartridge, revision 2.

Pentium III Xeon

The Pentium III Xeon is an improved version of the Pentium II Xeon. Initial versions with external L2 cache chips included 9.5 million transistors. The Pentium III Xeon, like the Pentium III, later switched to on-die L2 cache. However, unlike the standard Pentium III, the Pentium III Xeon continued to use a slot-based design.

When the Pentium III versions with on-die cache were released, the transistor count went up to 28.1 million transistors in the 256KB cache version, 84 million transistors in the 1MB cache version, and a whopping 140 million transistors in the latest 2MB cache version, setting an industry record at the time. The high transistor counts are due to the on-die L2 cache, which is very transistor intensive. As with the Pentium II Xeon, the L2 cache in all Pentium III Xeon processors has a full 64GB RAM address range and supports ECC.

To improve reliability over that of the Pentium II Xeon, the Pentium III Xeon has an SMBus interface and a thermal sensor. These are used along with the additional signals in the SC330 connector to monitor the processor's operation.

Most versions of the Pentium III Xeon use SC330 (Slot 2) or an improved version known as SC330.1. However, a few late-model Pentium III Xeon processors use a 495-pin SECC connector in a proprietary cartridge. These were used as OEM products in multiprocessor-capable servers such as the Dell PowerEdge 4400. Dell configures the processors to run as primary or secondary processors, so you must order processors for this and similar models from Dell. Table 2.21 lists the specifications of all Pentium III Xeon processors.

Table 2.21. Pentium III Xeon Specifications

S-Spec Number

Step

Processor Signature

Core Speed (MHz)

FSB Speed (MHz)

L2 Size (KB)

Slot or Socket Type

SL2XU

B0

0672h

500

100

512

SC330

SL2XV

B0

0672h

500

100

1024

SC330

SL2XW

B0

0672h

500

100

2048

SC330

SL385

C0

0673h

500

100

512

SC330

SL386

C0

0673h

500

100

1024

SC330

SL387

C0

0673h

500

100

2048

SC330

SL3C9

B0

0672h

500

100

512

SC330

SL3CA

B0

0672h

500

100

1024

SC330

SL3CB

B0

0672h

500

100

2048

SC330

SL3D9

C0

0673h

500

100

512

SC330

SL3DA

C0

0673h

500

100

1024

SC330

SL3DB

C0

0673h

500

100

2048

SC330

SL3AJ

C0

0673h

550

100

512

SC330

SL3CE

C0

0673h

550

100

1024

SC330

SL3CF

C0

0673h

550

100

2048

SC330

SL3FK[1]

C0

0673h

550

100

512

SC330

SL3FR[1]

C0

0673h

550

100

512

SC330

SL3LM

C0

0673h

550

100

512

SC330

SL3LN

C0

0673h

550

100

1024

SC330

SL3LP

C0

0673h

550

100

2048

SC330

SL3TW

C0

0673h

550

100

1024

SC330

SL3Y4

C0

0673h

550

100

512

SC330

SL3BJ

A2

0681h

600

133

256

SC330.1

SL3BK

A2

0681h

600

133

256

SC330.1

SL3SS

A2

0681h

600

133

256

SC330.1

SL3WM

B0

0683h

600

133

256

SC330.1

SL3WN

B0

0683h

600

133

256

SC330.1

SL3BL

A2

0681h

667

133

256

SC330.1

SL3DC

A2

0681h

667

133

256

SC330.1

SL3ST

A2

0681h

667

133

256

SC330.1

SL3WP

B0

0683h

667

133

256

SC330.1

SL3WQ

B0

0683h

667

133

256

SC330.1

SL3U4[2]

A0

06A0h

700

100

1024

SC330.1

SL3U5[2]

A0

06A0h

700

100

1024

SC330.1

SL3WZ[2]

A0

06A0h

700

100

2048

SC330.1

SL3X2[2]

A0

06A0h

700

100

2048

SC330.1

SL49P

A1

6A1h

700

100

1024

SC330.1

SL49Q

A1

6A1h

700

100

1024

SC330.1

SL49R

A1

6A1h

700

100

2048

SC330.1

SL49S

A1

6A1h

700

100

2048

SC330.1

SL4GD[3]

A0

06A0h

700

100

1024

SC330.1

SL4GE[3]

A0

06A0h

700

100

1024

SC330.1

SL4GF[3]

A0

06A0h

700

100

2048

SC330.1

SL4GG[3]

A0

06A0h

700

100

2048

SC330.1

SL4R3

A1

6A1h

700

100

2048

SC330.1

SL4RZ

A1

6A1h

700

100

1024

SC330.1

SL4XU

B0

6A4h

700

100

1024

SC330.1

SL4XV

B0

6A4h

700

100

1024

SC330.1

SL4XW

B0

6A4h

700

100

2048

SC330.1

SL4XX

B0

6A4h

700

100

2048

SC330.1

SL5D4

B0

6A4h

700

100

1024

SC330.1

SL5D5

B0

6A4h

700

100

2048

SC330.1

SL3SF

A2

0681h

733

133

256

SC330.1

SL3SG

A2

0681h

733

133

256

SC330.1

SL3SU

A2

0681h

733

133

256

SC330.1

SL3WR

B0

0683h

733

133

256

SC330.1

SL3WS

B0

0683h

733

133

256

SC330.1

SL4H6

C0

0686h

733

133

256

SC330.1

SL4H7

C0

0686h

733

133

256

495-pin SECC

SL3V2

A2

0681h

800

133

256

SC330.1

SL3V3

A2

0681h

800

133

256

SC330.1

SL3VU

A2

0681h

800

133

256

SC330.1

SL3WT

B0

0683h

800

133

256

SC330.1

SL3WU

B0

0683h

800

133

256

SC330.1

SL4H8

C0

0686h

800

133

256

SC330.1

SL4H9

C0

0686h

800

133

256

495-pin SECC

SL3WV

B0

0683h

866

133

256

SC330.1

SL3WW

B0

0683h

866

133

256

SC330.1

SL4HA

C0

0686h

866

133

256

SC330.1

SL4HB

C0

0686h

866

133

256

495-pin SECC

SL4PZ

B0

0683h

866

133

256

SC330.1

SL4U2

C0

0686h

866

133

256

SC330.1

SL4XY

B0

6A4h

900

100

2048

SC330.1

SL4XZ

B0

6A4h

900

100

2048

SC330.1

SL5D3

B0

6A4h

900

100

2048

SC330.1

SL3WX

B0

0683h

933

133

256

SC330.1

SL3WY

B0

0683h

933

133

256

SC330.1

SL4HC

C0

0686h

933

133

256

495-pin SECC

SL4HD

C0

0686h

933

133

256

495-pin SECC

SL4R9

C0

0686h

933

133

256

SC330.1

SL4HE

C0

0686h

1000

133

256

495-pin SECC

SL4HF

C0

0686h

1000

133

256

495-pin SECC

SL4Q2

C0

0686h

1000

133

256

495-pin SECC


[1] Processors validated for use in two-way systems only.

[2] Should not be mixed with processors designated by footnote 3 due to differences in AGTL+ reference voltage.

[3] Should not be mixed with processors designated by footnote 2 due to differences in AGTL+ reference voltage.

Pentium 4 Processors

The Pentium 4, introduced in 2000, is the most popular of Intel's current desktop processors. Like its predecessors, it has also been adapted for use in single-processor low-end servers. However, unlike the Pentium II and Pentium III, the Pentium 4 does not support multiple-processor configurations. Initially, the Pentium 4 was produced in a Socket 423 version (originally code-named Willamette), but updated versions used Socket 478, with the most recent steppings designed for use with Socket 775.

Internally, the Pentium 4 introduces a new architecture Intel calls NetBurst microarchitecture, which is more a marketing term than a technical one. Intel uses NetBurst to describe hyper-pipelined technology, a rapid execution engine, a high-speed (400MHz, 533MHz, or 800MHz) system bus, and an execution trace cache. The hyper-pipelined technology doubles the instruction pipeline depth compared to the Pentium III, which means more and smaller steps are required to execute instructions. Even though this might seem less efficient, it enables much higher clock speeds to be more easily attained. The rapid execution engine enables the two integer arithmetic logic units (ALUs) to run at twice the processor core frequency, which means instructions can execute in half a clock cycle. The 400MHz/533MHz/800MHz system bus is a quad-pumped bus running on a 100MHz/133MHz/200MHz system clock, transferring data four times per clock cycle. The execution trace cache is a high-performance L1 cache that stores approximately 12,000 decoded micro-operations. This removes the instruction decoder from the main execution pipeline, increasing performance.

The high-speed processor bus is most notable of the Pentium 4's features. Technically speaking, the processor bus is a 100MHz, 133MHz, or 200MHz quad-pumped bus that transfers four times per cycle (4x), for a 400MHz, 533MHz, or 800MHz effective rate. Because the bus is 64 bits (8 bytes) wide, this results in a throughput rate of 3200MBps, 4266MBps, or 6400MBps. The Pentium 4 Extreme Edition offers a 1066MHz processor bus, which offers a throughput of 8528MBps.

Power Supply Issues

The Pentium 4 requires a lot of electrical power, and most Pentium 4 motherboards therefore use a VRM that is powered from 12V instead of 3.3V or 5V, as with previous designs. By using 12V power, more 3.3V and 5V power is available to run the rest of the system, and the overall current draw is greatly reduced with the higher voltage as a source. PC power supplies generate a more than adequate supply of 12V power, but the ATX motherboard and power supply design originally allotted only one pin for 12V power (each pin is rated for only 6 amps), so additional 12V lines were necessary to carry this power to the motherboard.

The fix appears in the form of a third power connector, called the ATX12V connector. This new connector is used in addition to the standard 20-pin ATX power supply connector and 6-pin auxiliary (3.3/5V) connector. Fortunately, the power supply itself doesn't need a redesign; there is more than enough 12V power available from the drive connectors. To utilize this, companies such as PC Power and Cooling sell an inexpensive ($8) adapter that converts a standard Molex-type drive power connector to the ATX12V connector. Typically, a 300-watt (the minimum recommended) or larger power supply has more than adequate levels of 12V power for both the drives and the ATX12V connector.

If a power supply is less than the 300-watt minimum recommended, you need to purchase a replacement ATX12V power supply.

For illustrations of the ATX12V connector, see "ATX Power Supply Standards," p. 248.


Pentium 4 Versions

The various Pentium 4 versions, including thermal and power specifications, are shown in Table 2.22.

Table 2.22. Pentium 4 Processor Information[1]

CPU Speed (GHz)

Bus Speed (MHz)

Bus Speed (GBps)

HT Support

Boxed S-Spec

OEM S-Spec

Stepping

CPUID

L2 Cache

L3 Cache

Max. Temp

Max. Power

Socket

Process

Transistors

Processor Model Number

1.30

400

3.2

No

SL4QD

SL4SF

B2

0F07h

256K

0K

69°C

48.9W

423

180nm

42M

N/A

1.30

400

3.2

No

SL4SF

SL4SF

B2

0F07h

256K

0K

69°C

48.9W

423

180nm

42M

N/A

1.30

400

3.2

No

SL5GC

SL5FW

C1

0F0Ah

256K

0K

70°C

51.6W

423

180nm

42M

N/A

1.40

400

3.2

No

SL4SC

SL4SG

B2

0F07h

256K

0K

70°C

51.8W

423

180nm

42M

N/A

1.40

400

3.2

No

SL4SG

SL4SG

B2

0F07h

256K

0K

70°C

51.8W

423

180nm

42M

N/A

1.40

400

3.2

No

SL4X2

SL4WS

C1

0F0Ah

256K

0K

72°C

54.7W

423

180nm

42M

N/A

1.40

400

3.2

No

SL5N7

SL59U

C1

0F0Ah

256K

0K

72°C

55.3W

478

180nm

42M

N/A

1.40

400

3.2

No

SL59U

SL59U

C1

0F0Ah

256K

0K

72°C

55.3W

478

180nm

42M

N/A

1.40

400

3.2

No

SL5UE

SL5TG

D0

0F12h

256K

0K

72°C

55.3W

478

180nm

42M

N/A

1.40

400

3.2

No

SL5TG

SL5TG

D0

0F12h

256K

0K

72°C

55.3W

478

180nm

42M

N/A

1.50

400

3.2

No

SL4TY

SL4SH

B2

0F07h

256K

0K

72°C

54.7W

423

180nm

42M

N/A

1.50

400

3.2

No

SL4SH

SL4SH

B2

0F07h

256K

0K

72°C

54.7W

423

180nm

42M

N/A

1.50

400

3.2

No

SL4X3

SL4WT

C1

0F0Ah

256K

0K

73°C

57.8W

423

180nm

42M

N/A

1.50

400

3.2

No

SL4WT

SL4WT

C1

0F0Ah

256K

0K

73°C

57.8W

423

180nm

42M

N/A

1.50

400

3.2

No

SL5TN

SL5SX

D0

0F12h

256K

0K

73°C

57.8W

423

180nm

42M

N/A

1.50

400

3.2

No

SL5N8

SL59V

C1

0F0Ah

256K

0K

73°C

57.9W

478

180nm

42M

N/A

1.50

400

3.2

No

SL5UF

SL5TJ

D0

0F12h

256K

0K

73°C

57.9W

478

180nm

42M

N/A

1.50

400

3.2

No

SL5TJ

SL5TJ

D0

0F12h

256K

0K

73°C

57.9W

478

180nm

42M

N/A

1.50

400

3.2

No

SL62Y

SL62Y

D0

0F12h

256K

0K

71°C

62.9W

478

180nm

42M

N/A

1.60

400

3.2

No

SL4X4

SL4WU

C1

0F0Ah

256K

0K

75°C

61.0W

423

180nm

42M

N/A

1.60

400

3.2

No

SL5UL

SL5VL

D0

0F12h

256K

0K

75°C

61.0W

423

180nm

42M

N/A

1.60

400

3.2

No

SL5VL

SL5VL

D0

0F12h

256K

0K

75°C

61.0W

423

180nm

42M

N/A

1.60

400

3.2

No

SL5UW

SL5US

C1

0F0Ah

256K

0K

75°C

60.8W

478

180nm

42M

N/A

1.60

400

3.2

No

SL5UJ

SL5VH

D0

0F12h

256K

0K

75°C

60.8W

478

180nm

42M

N/A

1.60

400

3.2

No

SL5VH

SL5VH

D0

0F12h

256K

0K

75°C

60.8W

478

180nm

42M

N/A

1.60

400

3.2

No

SL6BC

SL679

E0

0F13h

256K

0K

75°C

60.8W

478

180nm

42M

N/A

1.60

400

3.2

No

SL679

SL679

E0

0F13h

256K

0K

75°C

60.8W

478

180nm

42M

N/A

1.60A

400

3.2

No

SL668

SL668

B0

0F24h

512K

0K

66°C

46.8W

478

130nm

55M

N/A

1.70

400

3.2

No

SL57V

SL57W

C1

0F0Ah

256K

0K

76°C

64.0W

423

180nm

42M

N/A

1.70

400

3.2

No

SL57W

SL57W

C1

0F0Ah

256K

0K

76°C

64.0W

423

180nm

42M

N/A

1.70

400

3.2

No

SL5TP

SL5SY

D0

0F12h

256K

0K

76°C

64.0W

423

180nm

42M

N/A

1.70

400

3.2

No

SL5N9

SL59X

C1

0F0Ah

256K

0K

76°C

63.5W

478

180nm

42M

N/A

1.70

400

3.2

No

SL5UG

SL5TK

D0

0F12h

256K

0K

76°C

63.5W

478

180nm

42M

N/A

1.70

400

3.2

No

SL5TK

SL5TK

D0

0F12h

256K

0K

76°C

63.5W

478

180nm

42M

N/A

1.70

400

3.2

No

SL62Z

SL62Z

D0

0F12h

256K

0K

73°C

67.7W

478

180nm

42M

N/A

1.70

400

3.2

No

SL6BD

SL67A

E0

0F13h

256K

0K

73°C

67.7W

478

180nm

42M

N/A

1.70

400

3.2

No

SL67A

SL67A

E0

0F13h

256K

0K

73°C

67.7W

478

180nm

42M

N/A

1.80

400

3.2

No

SL4X5

SL4WV

C1

0F0Ah

256K

0K

78°C

66.7W

423

180nm

42M

N/A

1.80

400

3.2

No

SL5UM

SL5VM

D0

0F12h

256K

0K

78°C

66.7W

423

180nm

42M

N/A

1.80

400

3.2

No

SL5VM

SL5VM

D0

0F12h

256K

0K

78°C

66.7W

423

180nm

42M

N/A

1.80

400

3.2

No

SL5UV

SL5UT

C1

0F0Ah

256K

0K

77°C

66.1W

478

180nm

42M

N/A

1.80

400

3.2

No

SL5UK

SL5VJ

D0

0F12h

256K

0K

77°C

66.1W

478

180nm

42M

N/A

1.80

400

3.2

No

SL5VJ

SL5VJ

D0

0F12h

256K

0K

77°C

66.1W

478

180nm

42M

N/A

1.80

400

3.2

No

SL6BE

SL67B

E0

0F13h

256K

0K

77°C

66.1W

478

180nm

42M

N/A

1.80

400

3.2

No

SL67B

SL67B

E0

0F13h

256K

0K

77°C

66.1W

478

180nm

42M

N/A

1.80A

400

3.2

No

SL63X

SL62P

B0

0F24h

512K

0K

67°C

49.6W

478

130nm

55M

N/A

1.80A

400

3.2

No

SL62P

SL62P

B0

0F24h

512K

0K

67°C

49.6W

478

130nm

55M

N/A

1.80A

400

3.2

No

SL68Q

SL66Q

B0

0F24h

512K

0K

67°C

49.6W

478

130nm

55M

N/A

1.80A

400

3.2

No

SL66Q

SL66Q

B0

0F24h

512K

0K

67°C

49.6W

478

130nm

55M

N/A

1.90

400

3.2

No

SL5WH

SL5VN

D0

0F12h

256K

0K

73°C

69.2W

423

180nm

42M

N/A

1.90

400

3.2

No

SL5VN

SL5VN

D0

0F12h

256K

0K

73°C

69.2W

423

180nm

42M

N/A

1.90

400

3.2

No

SL5WG

SL5VK

D0

0F12h

256K

0K

75°C

72.8W

478

180nm

42M

N/A

1.90

400

3.2

No

SL5VK

SL5VK

D0

0F12h

256K

0K

75°C

72.8W

478

180nm

42M

N/A

1.90

400

3.2

No

SL6BF

SL67C

E0

0F13h

256K

0K

75°C

72.8W

478

180nm

42M

N/A

1.90

400

3.2

No

SL67C

SL67C

E0

0F13h

256K

0K

75°C

72.8W

478

180nm

42M

N/A

2.0

400

3.2

No

SL5TQ

SL5SZ

D0

0F12h

256K

0K

74°C

71.8W

423

180nm

42M

N/A

2.0

400

3.2

No

SL5UH

SL5TL

D0

0F12h

256K

0K

76°C

75.3W

478

180nm

42M

N/A

2.0

400

3.2

No

SL5TL

SL5TL

D0

0F12h

256K

0K

76°C

75.3W

478

180nm

42M

N/A

2.0A

400

3.2

No

SL5ZT

SL5YR

B0

0F24h

512K

0K

68°C

52.4W

478

130nm

55M

N/A

2.0A

400

3.2

No

SL5YR

SL5YR

B0

0F24h

512K

0K

68°C

52.4W

478

130nm

55M

N/A

2.0A

400

3.2

No

SL68R

SL66R

B0

0F24h

512K

0K

68°C

52.4W

478

130nm

55M

N/A

2.0A

400

3.2

No

SL66R

SL66R

B0

0F24h

512K

0K

68°C

52.4W

478

130nm

55M

N/A

2.0A

400

3.2

No

SL6E7

SL6GQ

C1

0F27h

512K

0K

69°C

54.3W

478

130nm

55M

N/A

2.0A

400

3.2

No

SL6GQ

SL6GQ

C1

0F27h

512K

0K

69°C

54.3W

478

130nm

55M

N/A

2.0A

400

3.2

No

SL6QM

SL6PK

D1

0F29h

512K

0K

74°C

54.3W

478

130nm

55M

N/A

2.20

400

3.2

No

SL5ZU

SL5YS

B0

0F24h

512K

0K

69°C

55.1W

478

130nm

55M

N/A

2.20

400

3.2

No

SL5YS

SL5YS

B0

0F24h

512K

0K

69°C

55.1W

478

130nm

55M

N/A

2.20

400

3.2

No

SL68S

SL66S

B0

0F24h

512K

0K

69°C

55.1W

478

130nm

55M

N/A

2.20

400

3.2

No

SL66S

SL66S

B0

0F24h

512K

0K

69°C

55.1W

478

130nm

55M

N/A

2.20

400

3.2

No

SL6E8

SL6GR

C1

0F27h

512K

0K

70°C

57.1W

478

130nm

55M

N/A

2.20

400

3.2

No

SL6GR

SL6GR

C1

0F27h

512K

0K

70°C

57.1W

478

130nm

55M

N/A

2.20

400

3.2

No

SL6QN

SL6PL

D1

0F29h

512K

0K

70°C

57.1W

478

130nm

55M

N/A

2.26

533

4.3

No

SL683

SL67Y

B0

0F24h

512K

0K

70°C

56.0W

478

130nm

55M

N/A

2.26

533

4.3

No

SL67Y

SL67Y

B0

0F24h

512K

0K

70°C

56.0W

478

130nm

55M

N/A

2.26

533

4.3

No

SL6ET

SL6D6

B0

0F24h

512K

0K

70°C

56.0W

478

130nm

55M

N/A

2.26

533

4.3

No

SL6EE

SL6DU

C1

0F27h

512K

0K

70°C

58.0W

478

130nm

55M

N/A

2.26

533

4.3

No

SL6DU

SL6DU

C1

0F27h

512K

0K

70°C

58.0W

478

130nm

55M

N/A

2.26

533

4.3

No

SL6Q7

SL6PB

D1

0F29h

512K

0K

70°C

58.0W

478

130nm

55M

N/A

2.40

400

3.2

No

SL67R

SL65R

B0

0F24h

512K

0K

70°C

57.8W

478

130nm

55M

N/A

2.40

400

3.2

No

SL65R

SL65R

B0

0F24h

512K

0K

70°C

57.8W

478

130nm

55M

N/A

2.40

400

3.2

No

SL68T

SL66T

B0

0F24h

512K

0K

70°C

57.8W

478

130nm

55M

N/A

2.40

400

3.2

No

SL66T

SL66T

B0

0F24h

512K

0K

70°C

57.8W

478

130nm

55M

N/A

2.40

400

3.2

No

SL6E9

SL6GS

C1

0F27h

512K

0K

71°C

59.8W

478

130nm

55M

N/A

2.40

400

3.2

No

SL6GS

SL6GS

C1

0F27h

512K

0K

71°C

59.8W

478

130nm

55M

N/A

2.40A

533

4.3

No

SL7E8

SL7E8

C0

0F33h

1M

0K

69°C

89.0W

478

90nm

125M

N/A

2.40B

533

4.3

No

SL684

SL67Z

B0

0F24h

512K

0K

70°C

57.8W

478

130nm

55M

N/A

2.40B

533

4.3

No

SL67Z

SL67Z

B0

0F24h

512K

0K

70°C

57.8W

478

130nm

55M

N/A

2.40B

533

4.3

No

SL6EU

SL6D7

B0

0F24h

512K

0K

70°C

57.8W

478

130nm

55M

N/A

2.40B

533

4.3

No

SL6EF

SL6DV

C1

0F27h

512K

0K

71°C

59.8W

478

130nm

55M

N/A

2.40B

533

4.3

No

SL6DV

SL6DV

C1

0F27h

512K

0K

71°C

59.8W

478

130nm

55M

N/A

2.40B

533

4.3

No

SL6QP

SL6PM

D1

0F29h

512K

0K

74°C

66.2W

478

130nm

55M

N/A

2.40C

800

6.4

Yes

SL6WR

SL6WF

D1

0F29h

512K

0K

74°C

66.2W

478

130nm

55M

N/A

2.40C

800

6.4

Yes

SL6Z3

SL6Z3

M0

0F25h

512K

0K

72°C

74.5W

478

130nm

55M

N/A

2.50

400

3.2

No

SL6EB

SL6GT

C1

0F27h

512K

0K

72°C

61.0W

478

130nm

55M

N/A

2.50

400

3.2

No

SL6GT

SL6GT

C1

0F27h

512K

0K

72°C

61.0W

478

130nm

55M

N/A

2.50

400

3.2

No

SL6QQ

SL6QQ

D1

0F29h

512K

0K

72°C

61.0W

478

130nm

55M

N/A

2.53

533

4.3

No

SL685

SL682

B0

0F24h

512K

0K

71°C

59.3W

478

130nm

55M

N/A

2.53

533

4.3

No

SL682

SL682

B0

0F24h

512K

0K

71°C

59.3W

478

130nm

55M

N/A

2.53

533

4.3

No

SL6EV

SL6D8

B0

0F24h

512K

0K

71°C

59.3W

478

130nm

55M

N/A

2.53

533

4.3

No

SL6EG

SL6DW

C1

0F27h

512K

0K

72°C

61.5W

478

130nm

55M

N/A

2.53

533

4.3

No

SL6DW

SL6DW

C1

0F27h

512K

0K

72°C

61.5W

478

130nm

55M

N/A

2.53

533

4.3

No

SL6Q9

SL6PD

D1

0F29h

512K

0K

72°C

61.5W

478

130nm

55M

N/A

2.60

400

3.2

No

SL6HB

SL6GU

C1

0F27h

512K

0K

72°C

62.6W

478

130nm

55M

N/A

2.60

400

3.2

No

SL6GU

SL6GU

C1

0F27h

512K

0K

72°C

62.6W

478

130nm

55M

N/A

2.60

400

3.2

No

SL6QR

SL6QR

D1

0F29h

512K

0K

75°C

69.0W

478

130nm

55M

N/A

2.60B

533

4.3

No

SL6S3

SL6S3

C1

0F27h

512K

0K

74°C

66.1W

478

130nm

55M

N/A

2.60B

533

4.3

No

SL6QA

SL6PE

D1

0F29h

512K

0K

74°C

66.1W

478

130nm

55M

N/A

2.60C

800

6.4

Yes

SL6WS

SL6WH

D1

0F29h

512K

0K

74°C

66.1W

478

130nm

55M

N/A

2.60C

800

6.4

Yes

SL78X

N/A

D1

0F29h

512K

0K

74°C

66.1W

478

130nm

55M

N/A

2.66

533

4.3

No

SL6DX

SL6DX

C1

0F27h

512KB

0K

73°C

66.1W

478

130nm

55M

N/A

2.66

533

4.3

No

SL6EH

N/A

C1

0F27h

512KB

0K

73°C

66.1W

478

130nm

55M

N/A

2.66

533

4.3

No

SL6S3

SL6S3

C1

0F27h

512KB

0K

74°C

66.1W

478

130nm

55M

N/A

2.66

533

4.3

No

SL6SK

N/A

C1

0F27h

512KB

0K

74°C

66.1W

478

130nm

55M

N/A

2.66

533

4.3

No

SL6PE

SL6PE

D1

0F29h

512KB

0K

74°C

66.1W

478

130nm

55M

N/A

2.66

533

4.3

No

SL6QA

N/A

D1

0F29h

512KB

0K

74°C

66.1W

478

130nm

55M

N/A

2.66

533

4.3

No

SL7E9

N/A

C0

0F33h

1M

0K

73.1°C

103W

478

90nm

125M

N/A

2.66

533

4.3

No

SL7YU

N/A

D0

0f34h

1M

0K

69.1°C

84W

775

90nm

125M

505

2.66

533

4.3

No

SL85U

N/A

E0

0F41H

1M

0K

67.7°C

84W

775

90nm

125M

505

2.80

400

3.2

No

N/A

SL7EY

D1

0F29h

512KB

0K

75°C

68.4W

478

130nm

55M

N/A

2.80

533

4.3

No

SL6K6

SL6HL

C1

0F27h

512K

0K

75°C

68.4W

478

130nm

55M

N/A

2.80

533

4.3

No

SL6HL

SL6HL

C1

0F27h

512K

0K

75°C

68.4W

478

130nm

55M

N/A

2.80

533

4.3

No

SL6SL

SL6S4

C1

0F27h

512K

0K

75°C

68.4W

478

130nm

55M

N/A

2.80

533

4.3

No

SL6S4

SL6S4

C1

0F27h

512K

0K

75°C

68.4W

478

130nm

55M

N/A

2.80

533

4.3

No

SL6QB

SL6PF

D1

0F29h

512K

0K

75°C

69.7W

478

130nm

55M

N/A

2.80

533

4.3

No

N/A

SL7PK

E0

0F41h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

2.80

533

4.3

No

SL88G

SL88G

E0

0F41h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

2.80

800

6.4

Yes

SL6WJ

SL6WJ

D1

0F29h

512K

0K

75°C

69.7W

478

130nm

55M

N/A

2.80

800

6.4

Yes

SL6WT

SL6WT

D1

0F29h

512K

0K

75°C

69.7W

478

130nm

55M

N/A

2.80

800

6.4

Yes

SL6Z5

N/A

M0

0F25h

512k

0K

73°C

76.0W

478

130nm

55M

N/A

2.80

800

6.4

Yes

SL7E2

SL7E2

D0

0f34h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

2.80

800

6.4

Yes

SL7E3

SL7E3

D0

0f34h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

2.80

800

6.4

Yes

N/A

SL7J5

D0

0f34h

1M

0K

67.7°C

84.0W

775

90nm

125M

520

2.80

800

6.4

Yes

SL7KA

SL7KA

D0

0f34h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

2.80

800

6.4

Yes

N/A

SL7J5

D0

0f34h

1M

0K

67.7°C

84.0W

775

90nm

125M

520

2.80

800

6.4

Yes

N/A

SL7PL

E0

0F41h

1M

0K

69.1°C

89.0W

775

90nm

125M

N/A

2.80

800

6.4

No

N/A

SL7PT

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

505

2.80

800

6.4

Yes

N/A

SL88H

E0

0F41h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

2.80

800

6.4

Yes

SL8HX

SL8HX

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

521[2]

2.80A

533

4.3

No

SL7K9

SL7K9

D0

0f34h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

2.80A

533

4.3

No

SL7D8

SL7D8

C0

0F33h

1M

0K

69°C

89.0W

478

90nm

125M

N/A

2.80C

800

6.4

Yes

SL78Y

N/A

D1

0F29h

512K

0K

75°C

69.7W

478

130nm

55M

N/A

2.80E

800

6.4

Yes

SL79K

SL79K

C0

0F33h

1M

0K

69°C

89.0W

478

90nm

125M

N/A

2.93

533

6.4

No

N/A

SL7YV

D0

0f34h

1M

0K

67.7°C

84.0W

775

90nm

125M

515

2.93

533

6.4

No

N/A

SL85V

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

515

3.0

800

6.4

Yes

SL6WU

SL6WK

D1

0F29h

512K

0K

70°C

81.9W

478

130nm

55M

N/A

3.0

800

6.4

Yes

SL78Z

N/A

D1

0F29h

512K

0K

70°C

81.9W

478

130nm

55M

N/A

3.0

800

6.4

Yes

SL7BK

N/A

M0

0F25h

512k

0K

66°C

82.0W

478

130nm

55M

N/A

3.0

800

6.4

Yes

SL7E4

SL7E4

D0

0f34h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

3.0

800

6.4

Yes

SL7KB

SL7KB

D0

0f34h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

3.0

800

6.4

Yes

SL7PM

SL7PM

E0

0F41h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

3.0

800

6.4

Yes

SL7PU

SL7PU

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

530J

3.0

800

6.4

Yes

SL7Z9

SL7Z9

N0

0F43h

2MB

0K

67.7°C

84.0W

775

90nm

169M

630[2]

3.0

800

6.4

Yes

SL88J

N/A

E0

0F41h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

3.00

800

6.4

Yes

SL7KK

SL7KK

D0

0f34h

1M

0K

67.7°C

84.0W

775

90nm

125M

530

3.00

800

6.4

Yes

SL7J6

SL7J6

D0

0f34h

1M

0K

67.7°C

84.0W

775

90nm

125M

530

3.0E

800

6.4

Yes

SL79L

SL79L

C0

0F33h

1M

0K

69°C

89.0W

478

90nm

125M

N/A

3.06

533

4.3

Yes

SL6K7

SL6JJ

C1

0F27h

512K

0K

69°C

81.8W

478

130nm

55M

N/A

3.06

533

4.3

Yes

SL6JJ

SL6JJ

C1

0F27h

512K

0K

69°C

81.8W

478

130nm

55M

N/A

3.06

533

4.3

Yes

SL6SM

SL6S5

C1

0F27h

512K

0K

69°C

81.8W

478

130nm

55M

N/A

3.06

533

4.3

Yes

SL6S5

SL6S5

C1

0F27h

512K

0K

69°C

81.8W

478

130nm

55M

N/A

3.06

533

4.3

Yes

SL6QC

SL6PG

D1

0F29h

512K

0K

69°C

81.8W

478

130nm

55M

N/A

3.06

533

4.3

No

N/A

SL87L

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

519

3.20

800

6.4

Yes

SL6WE

SL6WG

D1

0F29h

512K

0K

70°C

82.0W

478

130nm

55M

N/A

3.20

800

6.4

Yes

SL792

N/A

D1

0F29h

512K

0K

70°C

82.0W

478

130nm

55M

N/A

3.20

800

6.4

Yes

SL79M

SL79M

C0

0F33h

1MB

0K

73.2°C

103.0W

478

90nm

125M

N/A

3.20

800

6.4

Yes

SL7B8

SL7B8

C0

0F33h

1MB

0K

73.2°C

103.0W

478

90nm

125M

N/A

3.20

800

6.4

Yes

SL7E5

SL7E5

D0

0f34h

1MB

0K

69.1°C

89.0W

478

90nm

125M

N/A

3.20

800

6.4

Yes

SL7J7

SL7J7

D0

0f34h

1MB

0K

67.7°C

84.0W

775

90nm

125M

540

3.20

800

6.4

Yes

SL7KC

SL7KC

D0

0f34h

1MB

0K

69.1°C

89.0W

478

90nm

125M

N/A

3.20

800

6.4

Yes

SL7KL

SL7KL

D0

0f34h

1MB

0K

67.7°C

84.0W

775

90nm

125M

540

3.20

800

6.4

Yes

SL7LA

SL7LA

D0

0f34h

1MB

0K

67.7°C

103.0W

775

90nm

125M

N/A[3]

3.20

800

6.4

Yes

SL7PN

SL7PN

E0

0F41h

1MB

0K

73.2°C

103.0W

775

90nm

125M

N/A

3.20

800

6.4

Yes

SL7PW

SL7PW

E0

0F41h

1MB

0K

67.7°C

84.0W

775

90nm

125M

540J

3.20

800

6.4

Yes

N/A

SL7PX

E0

0F41h

1MB

0K

67.7°C

84.0W

775

90nm

125M

540[3]

3.20

800

6.4

Yes

SL7Z8

SL7Z8

E0

0F43h

2MB

0K

67.7°C

84.0W

775

90nm

169M

640[2]

3.20

800

6.4

Yes

SL88K

N/A

E0

0F41h

1MB

0K

69.1°C

89.0W

478

90nm

125M

N/A

3.2EE

800

6.4

Yes

SL7AA

SL7AA

M0

0F25h

512K

2M

64°C

92.1W

478

130nm

178M

N/A

3.40

800

6.4

Yes

SL793

SL793

D1

0F29h

512K

0K

70°C

89.0W

478

130nm

55M

N/A

3.40

800

6.4

Yes

SL7AJ

SL7AJ

C0

0F33h

1M

0K

73°C

103.0W

478

90nm

125M

N/A

3.40

800

6.4

Yes

SL7B9

N/A

C0

0F33h

1M

0K

73.2°C

103.0W

478

90nm

125M

N/A

3.40

800

6.4

Yes

SL7E6

SL7E6

D0

0f34h

1M

0K

73.2°C

103.0W

478

90nm

125M

N/A

3.40

800

6.4

Yes

SL7J8

SL7J8

D0

0f34h

1M

0K

72.8°C

115.0W

775

90nm

125M

550

3.40

800

6.4

Yes

SL7KD

SL7KD

E0

0F41h

1M

0K

73.2°C

103.0W

478

90nm

125M

N/A

3.40

800

6.4

Yes

SL7KM

SL7KM

D0

0f34h

1M

0K

72.8°C

115.0W

775

90nm

125M

550

3.40

800

6.4

Yes

SL7LH

SL7LH

D0

0f34h

1M

0K

72.8°C

115.0W

775

90nm

125M

N/A[3]

3.40

800

6.4

Yes

N/A

SL7PP

E0

0F41h

1M

0K

73.2°C

103.0W

478

90nm

125M

N/A

3.40

800

6.4

Yes

SL7PY

SL7PY

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

550J

3.40

800

6.4

Yes

N/A

SL7PZ

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

550[3]

3.40

800

6.4

Yes

SL7RR

SL7RR

M0

0F25h

512K

2M

66°C

109.6W

775

130nm

169M

N/A

3.40

800

6.4

Yes

SL7Z7

SL7Z7

N0

0F43h

2MB

0K

67.7°C

84.0W

775

90nm

125M

650[2]

3.4EE

800

6.4

Yes

SL7CH

SL7CH

M0

0F25h

512K

2M

68°C

102.9W

478

130nm

178M

N/A

3.4EE

800

6.4

Yes

SL7GD

SL7GD

M0

0F25h

512K

2M

66°C

109.6W

775

130nm

178M

N/A

3.46EE

1066

8.5

Yes

SL7NF

SL7NF

M0

0F25h

512K

2M

66°C

110.7W

775

130nm

178M

N/A

3.46EE

1066

8.5

Yes

N/A

SL7RT

M0

0F25h

512K

2M

66°C

110.7W

775

130nm

178M

N/A

3.60

800

6.4

Yes

SL7J9

SL7J9

D0

0f34h

1M

0K

72.8°C

115.0W

775

90nm

125M

560

3.60

800

6.4

Yes

N/A

SL7KN

D0

0f34h

1M

0K

72.8°C

115.0W

775

90nm

125M

560

3.60

800

6.4

Yes

SL7L9

SL7L9

D0

0f34h

1M

0K

72.8°C

115.0W

775

90nm

125M

560[3]

3.60

800

6.4

Yes

N/A

SL7NZ

E0

0F41h

1M

0K

72.8°C

115.0W

775

90nm

125M

560[3]

3.60

800

6.4

Yes

SL7Q2

SL7Q2

E0

0F41h

1M

0K

72.8°C

115.0W

775

90nm

125M

560J

3.60

800

6.4

Yes

SL8J6

SL8J6

E0

0F41h

1M

0K

72.8°C

115.0W

775

90nm

125M

N/A[2]

3.60

800

6.4

Yes

SL7Z5

SL7Z5

N0

0F43h

2MB

0K

72.8°C

115.0W

775

90nm

125M

660[2]

3.80

800

6.4

Yes

SL7P2

SL7P2

E0

0F41h

1M

0K

72.8°C

115.0W

775

90nm

125M

N/A[2]

3.80

800

6.4

Yes

SL82U

SL82U

E0

0F41h

1M

0K

72.8°C

115.0W

775

90nm

125M

570J

3.80

800

6.4

Yes

N/A

SL8J7

E0

0F41h

1M

0K

72.8°C

115.0W

775

90nm

125M

N/A[2]

3.80

800

6.4

Yes

N/A

SL7Z3

N0

0F43h

2MB

0K

72.8°C

115.0W

775

90nm

125M

670[2]


[1] HT = Hyper-Threading Technology; and EE = Extreme Edition.

[2] This processor supports Intel Extended Memory 64 Technology (EM64T) and Execute Disable Bit (NX).

[3] This processor supports Intel Extended Memory 64 Technology (EM64T).

A Pentium 4 processor is shown in Figure 2.38.

Figure 2.38. A Pentium 4 FC-PGA2 processor.


Xeon Processors

Xeon processors are based on the Pentium 4 and are designed, as their predecessors, for multiple-processor applications.

The Xeon processors based on the original 32-bit version of Pentium 4 desktop processor are divided into two categories:

  • Xeon DP The Xeon DP with 256KB L2 cache is designed for workstations; the Xeon DP with 512KB up to 2MB of L2 is designed for use in single- or dual-processor servers.

  • Xeon MP The Xeon MP is designed for use in up to eight-way servers.

Figure 2.39 shows the front and rear views of the Xeon MP processor.

Figure 2.39. The Intel Xeon MP processor is based on the Intel Pentium 4 but is designed for use in up to eight-way servers. (Photograph used by permission of Intel Corporation.)


Table 2.23 provides essential details about the Xeon processors.

Table 2.23. Intel Xeon Processors for Workstations and Servers

S-Spec

Core Stepping

Processor Signature

CPU Core Speed (GHz)

FSB Speed (MHz)

L2 Size (KB)

L3 Size (MB)

HT Technology

Socket Type

SL4XU

B0

6AH4

.7

100

1024

No

Slot 2

SL4WX

C1

0F0Ah

1.4

400

256

No

603-pin

SL56G

C1

0F0Ah

1.4

400

256

No

603-pin

SL4WY

C1

0F0Ah

1.5

400

256

No

603-pin

SL4ZT

C1

0F0Ah

1.5

400

256

No

603-pin

SL5TD

D0

0F12h

1.5

400

256

No

603-pin

SL5U6

D0

0F12h

1.5

400

256

No

603-pin

SL6GV

C1

0F27H

1.6

400

512

Yes

604-pin

SL6XK

D1

0F29H

1.6

400

512

Yes

604-pin

SL56H

C1

0F0Ah

1.7

400

256

No

603-pin

SL56N

C1

0F0Ah

1.7

400

256

No

603-pin

SL5TE

D0

0F12h

1.7

400

256

No

603-pin

SL5U7

D0

0F12h

1.7

400

256

No

603-pin

SL5Z8

B0

0F24h

1.8

400

512

Yes

603-pin

SL622

B0

0F24h

1.8

400

512

Yes

603-pin

SL6EL

C1

0F27H

1.8

400

512

Yes

603-pin

SL6JX

C1

0F27H

1.8

400

512

Yes

603-pin

SL6W3

D1

0F29H

1.8

400

512

Yes

603-pin

SL6YS

D1

0F29H

1.8

400

512

Yes

603-pin

SL5TH

D0

0F12h

2

400

256

No

603-pin

SL5U8

D0

0F12h

2

400

256

No

603-pin

SL5Z9

B0

0F24h

2

400

512

Yes

603-pin

SL623

B0

0F24h

2

400

512

Yes

603-pin

SL6EM

C1

0F27H

2

400

512

Yes

603-pin

SL6JY

C1

0F27H

2

400

512

Yes

603-pin

SL6W6

D1

0F29H

2

400

512

Yes

603-pin

SL6XL

D1

0F29H

2

400

512

Yes

604-pin

SL6YT

D1

0F29H

2

400

512

Yes

603-pin

SL6NP

C1

0F27H

2

533

512

Yes

604-pin

SL6RQ

C1

0F27H

2

533

512

Yes

604-pin

SL6VK

D1

0F29H

2

533

512

Yes

604-pin

SL6YM

D1

0F29H

2

533

512

Yes

604-pin

SL72C

M0

0F25H

2

533

512

Yes

604-pin

SL73K

M0

0F25H

2

533

512

Yes

604-pin

SL73L

M0

0F25H

2

533

512

Yes

604-pin

SL5ZA

B0

0F24h

2.2

400

512

Yes

603-pin

SL624

B0

0F24h

2.2

400

512

Yes

603-pin

SL6EN

C1

0F27H

2.2

400

512

Yes

603-pin

SL6JZ

C1

0F27H

2.2

400

512

Yes

603-pin

SL6W7

D1

0F29H

2.2

400

512

Yes

603-pin

SL6YU

D1

0F29H

2.2

400

512

Yes

603-pin

SL65T

B0

0F24h

2.4

400

512

Yes

603-pin

SL687

B0

0F24h

2.4

400

512

Yes

603-pin

SL6EP

C1

0F27H

2.4

400

512

Yes

603-pin

SL6K2

C1

0F27H

2.4

400

512

Yes

603-pin

SL6W8

D1

0F29H

2.4

400

512

Yes

603-pin

SL6YV

D1

0F29H

2.4

400

512

Yes

603-pin

SL6GD

C1

0F27H

2.4

533

512

Yes

604-pin

SL6NQ

C1

0F27H

2.4

533

512

Yes

604-pin

SL6VL

D1

0F29H

2.4

533

512

Yes

604-pin

SL6YN

D1

0F29H

2.4

533

512

Yes

604-pin

SL72D

M0

0F25H

2.4

533

512

Yes

604-pin

SL74T

D1

0F29H

2.4

533

512

Yes

604-pin

SL6EQ

C1

0F27H

2.6

400

512

Yes

603-pin

SL6K3

C1

0F27H

2.6

400

512

Yes

603-pin

SL6W9

D1

0F29H

2.6

400

512

Yes

603-pin

SL6YW

D1

0F29H

2.6

400

512

Yes

603-pin

SL6GF

C1

0F27H

2.66

533

512

Yes

604-pin

SL6NR

C1

0F27H

2.66

533

512

Yes

604-pin

SL6NR

D1

0F29H

2.66

533

512

Yes

604-pin

SL6VM

D1

0F29H

2.66

533

512

Yes

604-pin

SL72E

M0

0F25H

2.66

533

512

Yes

604-pin

SL73M

M0

0F25H

2.66

533

512

Yes

604-pin

SL6M7

C1

0F27H

2.8

400

512

Yes

603-pin

SL6MS

C1

0F27H

2.8

400

512

Yes

603-pin

SL6WA

D1

0F29H

2.8

400

512

Yes

603-pin

SL6YX

D1

0F29H

2.8

400

512

Yes

603-pin

SL6Z8

B1

0F25H

2.8

400

512

2

Yes

603-pin

SL6GG

C1

0F27H

2.8

533

512

Yes

604-pin

SL6NS

C1

0F27H

2.8

533

512

Yes

604-pin

SL6VN

D1

0F29H

2.8

533

512

Yes

604-pin

SL6VN

D1

0F29H

2.8

533

512

Yes

604-pin

SL6YQ

D1

0F29H

2.8

533

512

Yes

604-pin

SL72F

M0

0F25H

2.8

533

512

Yes

604-pin

SL73N

M0

0F25H

2.8

533

512

Yes

604-pin

SL7D5

M0

0F25H

2.8

533

512

1

Yes

604-pin

SL7D5

M0

0F25H

2.8

533

512

1

Yes

604-pin

SL7DV

D0

0f34H

2.8

800

1024

Yes

604-pin

SL7HF

D0

0f34H

2.8

800

1024

Yes

604-pin

SL7PD

E0

0F41H

2.8

800

1024

Yes

604-pin

SL7TB

E0

0F41H

2.8

800

1024

Yes

604-pin

SL6YY

D1

0F29H

3

400

512

Yes

603-pin

SL6VW

C1

0F27H

3

400

1024

Yes

603-pin

SL6X4

C1

0F27H

3

400

1024

Yes

603-pin

SL7EW

C0

0F41H

3

667

512

8

Yes

604-pin

SL7DW

D0

0f34H

3

800

1024

Yes

604-pin

SL7HG

D0

0f34H

3

800

1024

Yes

604-pin

SL7PE

E0

0F41H

3

800

1024

Yes

604-pin

SL7TC

E0

0F41H

3

800

1024

Yes

604-pin

SL7ZF

N0

0F43H

3

800

2048

Yes

604-pin

SL8ZQ

N0

0F43H

3

800

2048

Yes

604-pin

SL84U

A0

0F41H

3.16

667

1024

Yes

604-pin

SL6GH

C1

0F27H

3.06

533

512

Yes

604-pin

SL6RR

C1

0F27H

3.06

533

512

Yes

604-pin

SL6VP

D1

0F29H

3.06

533

512

Yes

604-pin

SL6YR

D1

0F29H

3.06

533

512

Yes

604-pin

SL72G

M0

0F25H

3.06

533

512

1

Yes

604-pin

SL73P

M0

0F25H

3.06

533

512

1

Yes

604-pin

SL72Y

M0

0F25H

3.2

533

512

1

Yes

604-pin

SL73Q

M0

0F25H

3.2

533

512

1

Yes

604-pin

SL7AE

M0

0F25H

3.2

533

512

2

Yes

604-pin

SL7BW

M0

0F25H

3.2

533

512

2

Yes

604-pin

SL7DX

D0

0F34H

3.2

800

1024

Yes

604-pin

SL7HH

D0

0F34H

3.2

800

1024

Yes

604-pin

SL7PF

E0

0F41H

3.2

800

1024

Yes

604-pin

SL7TD

E0

0F41H

3.2

800

1024

Yes

604-pin

SL7ZE

N0

0F43H

3.2

800

2048

Yes

604-pin

SL8ZP

N0

0F43H

3.2

800

2048

Yes

604-pin

SL8EY

C0

0F41H

3.33

667

512

8

Yes

604-pin

SL7DY

D0

0F34H

3.4

800

1024

Yes

604-pin

SL7HJ

D0

0F34H

3.4

800

1024

Yes

604-pin

SL7PG

E0

0F41H

3.4

800

1024

Yes

604-pin

SL7TE

E0

0F41H

3.4

800

1024

Yes

604-pin

SL7ZD

N0

0F43H

3.4

800

512

2

Yes

604-pin

SL7ZK

N0

0F43H

3.4

800

512

2

Yes

604-pin

SL7DZ

D0

0F34H

3.6

800

1024

Yes

604-pin

SL7HK

D0

0F34H

3.6

800

1024

Yes

604-pin

SL7PH

E0

0F41H

3.6

800

1024

Yes

604-pin

SL7VF

E0

0F41H

3.6

800

1024

Yes

604-pin

SL7ZC

N0

0F43H

3.6

800

512

2

Yes

604-pin

SL7ZJ

N0

0F43H

3.6

800

512

2

Yes

604-pin

SL84W

A0

0F41H

3.66

667

1024

Yes

604-pin


The Xeon MP is designed for use in servers with more than two processors. All versions of the Xeon MP features L1, L2, and L3 caches; use Socket 603; and feature HT Technology.

Table 2.24 lists the different versions of the 32-bit Xeon MP processor.

Table 2.24. Xeon MP Specifications

S-Spec

Core Stepping

Processor Signature

Core Speed (GHz)

Data Bus (MHz)

L2 Cache Size (KB)

L3 Cache Size (KB)

HT Technology

SL5FZ

C0

0F11h

1.4

400

256

512

Yes

SL5RV

C0

0F11h

1.4

400

256

512

Yes

SL5G2

C0

0F11h

1.5

400

256

512

Yes

SL5RW

C0

0F11h

1.5

400

256

512

Yes

SL6GZ

A0

0F22h

1.5

400

512

1024

Yes

SL6KB

A0

0F22h

1.5

400

512

1024

Yes

SL5G8

C0

0F11h

1.6

400

256

1024

Yes

SL5S4

C0

0F11h

1.6

400

256

1024

Yes

SL6H2

A0

0F22h

1.9

400

512

1024

Yes

SL6KC

A0

0F22h

1.9

400

512

1024

Yes

SL66Z

A0

0F22h

2

400

512

2048

Yes

SL6KD

A0

0F22h

2

400

512

2048

Yes

SL6YJ

B1

0F25h

2

400

512

1024

Yes

SL6Z6

B1

0F25h

2

400

512

1024

Yes

SL7A5

C0

OF26h

2.2

400

512

2048

Yes

SL6Z2

B1

0F25h

2.5

400

512

1024

Yes

SL6Z7

B1

0F25h

2.5

400

512

1024

Yes

SL79Z

C0

0F26h

2.7

400

512

2048

Yes

SL6YL

B1

0F25h

2.8

400

512

2048

Yes

SL79V

C0

0F26h

3

400

512

4096

Yes


Xeon DP with EM64T Support

Just as recent versions of the Pentium 4 incorporate EM64T support so they can run 64-bit applications, the Xeon DP is also available with 64-bit support (see Table 2.25). EM64T is Intel's implementation of the 64-bit extensions originally developed by AMD for its Opteron and Athlon 64 and 64FX processors. These processors also support Execute Disable Bit (XDB) to stop buffer-overrun virus attacks and Enhanced SpeedStep Technology.

Table 2.25. Xeon DP with EM64T Specifications[1]

Core Speed (GHz)

Data Bus (MHz)

L2 Cache Size (KB)

L3 Cache Size (KB)

HT Technology

Dual-Core Support

Processor Number

2.80GHz

800MHz

2MB

Yes

2.8GHz

800MHz

4MB

Yes

Yes

3GHz

800MHz

2MB

Yes

3.2GHz

800MHz

2MB

Yes

3.4GHz

800MHz

2MB

Yes

3.6GHz

800MHz

2MB

Yes

3.8GHz

800MHz

2MB

Yes


[1] For S-Spec numbers and other details, see the Intel website (www.intel.com).

Xeon MP with EM64T Support

In 2005, Intel announced a new series of Xeon MP processors with Intel's Extended Memory 64 Technology (EM64T) support. EM64T is Intel's implementation of the 64-bit extensions originally developed by AMD for its Opteron and Athlon 64 and 64FX processors. Xeon MP processors with EM64T have the following specifications:

  • 1MB of on-die L2 cache

  • Socket 604 (except as noted in Table 2.26)

  • 4MB or 8MB of on-die L3 cache; 8MB is twice the size of the largest L3 cache available in the 32-bit Xeon MP product line, and very few 32-bit Xeon MPs featured 4MB. 8MB is very close to the L3 cache size used by the Itanium 2 and makes the Xeon MP a better choice for network servers that need to support a mixture of 32-bit and 64-bit applications.

  • Clock speeds of 2.83GHz to 3.66GHz, compared to 3GHz for the 32-bit versions of the Xeon MP

  • 667MHz FSB; this is significantly faster than the 400MHz FSB used by 32-bit versions of the Xeon MP.

  • 7xxx-series processors that feature dual-core designs, enabling a four-way processor, for example, to have performance similar to that of an eight-way single-core processor.

Table 2.26 lists the specifications for these processors.

Table 2.26. 64-bit Xeon MP Specifications[1]

Core Speed (GHz)

Data Bus (MHz)

L2 Cache Size (KB)

L3 Cache Size (KB)

HT Technology

Dual-Core Support

Processor Number

2.66GHz

667MHz

2MB

Yes

Yes

7020[2]

2.8GHz

800MHz

2MB

Yes

Yes

7030

2.83GHz

667MHz

1MB

Yes

3GHz

667MHz

4MB

Yes

Yes

7040

3GHz

800MHz

4MB

Yes

Yes

7041

3.16GHz

667MHz

1MB

Yes

3.33GHz

667MHz

1MB

Yes

3.66GHz

667MHz

1MB

Yes

2.66GHz

667MHz

1MB

4MB

Yes

2.66GHz

667MHz

1MB

8MB

Yes

2.83GHz

667MHz

1MB

4MB

Yes

2.83GHz

667MHz

1MB

8MB

Yes

3.00GHz

667MHz

1MB

4MB

Yes

3.00GHz

667MHz

1MB

8MB

Yes

3.16GHz

667MHz

1MB

4MB

Yes

3.16GHz

667MHz

1MB

8MB

Yes

3.33GHz

667MHz

1MB

4MB

Yes

3.33GHz

667MHz

1MB

8MB

Yes

3.66GHz

667MHz

1MB

4MB

Yes

3.66GHz

667MHz

1MB

8MB

Yes


[1] For S-Spec numbers and other details, see the Intel website (www.intel.com).

[2] This processor plugs in to Socket T (LGA775).

Processors in the 7xxx series support Intel's virtualization technology, which enables a system to run different operating systems and applications in logical partitions. In other words, one server can act like two or more servers.

Single-core processors are supported by Intel's E8500 chipset, and dual-core processors require Intel's E8501 chipset. (See Chapter 3 for details.)

Itanium and Itanium 2 Processors

Introduced in 2001, the Itanium was the first processor in Intel's IA-64 (Intel Architecture 64-bit) product family, and it incorporated innovative performance-enhancing architecture techniques, such as prediction and speculation. It and its newer sibling, the Itanium 2 (introduced in 2002), are the highest-end processors from Intel and are designed for the enterprise server market. In fact, Hewlett-Packard (which co-developed the Itanium series with Intel) has decided to retire its RISC-based AlphaServer and Hewlett-Packard 9000 servers and their processors (Alpha and PA-RISC) in favor of Itanium 2based systems.

Note

To learn more about the Hewlett-Packard's Business Systems Evolution programs for moving users of AlphaServer and PA-RISC products to Itanium 2-based platforms, go to www.hp.com/products1/evolution/.


The Itanium family represents the eight-generation processors in the Intel family. Even more significantly, Itanium uses a different chip architecture than the x86-based processors discussed in previous sections.

Itanium Architecture

Intel and Hewlett-Packard began jointly working on the Itanium processor in 1994, although the first Itaniums were not released until 2001. Itanium is the first microprocessor based on the IA-64 specification, which is also supported by Itanium 2. IA-64 is a completely different processor design that uses Very Long Instruction Words (VLIW), instruction prediction, branch elimination, speculative loading, and other advanced processes for enhancing parallelism from program code. The Itanium series features elements of both CISC and RISC design.

The Itanium series incorporates a design architecture Intel calls EPIC, which enables the processor to execute parallel instructionsthat is, several instructions at the same time. In the Itanium and Itanium 2, three instructions can be encoded in one 128-bit word so that each instruction has a few more bits than today's 32-bit instructions. The extra bits let the chip address more registers and tell the processor which instructions to execute in parallel. This approach simplifies the design of processors with many parallel-execution units and should let them run at higher clock rates. In other words, besides being capable of executing several instructions in parallel within the chip, the Itanium can be linked to other Itanium chips in a parallel processing environment. The Itanium 2 also supports parallel processing.

Besides having new features and running a completely new 64-bit instruction set, Itanium and Itanium 2 feature full backward compatibility with the current 32-bit Intel x86 software. In this way, they support 64-bit instructions while retaining full compatibility with today's 32-bit applications. Full backward compatibility means the Itanium and Itanium 2 can run all existing applications as well as any new 64-bit applications. Unfortunately, because this is not the native mode for the processor, performance is not as good when executing 32-bit instructions as it is with the Pentium 4 and earlier chips.

Tip

If you need to run 32-bit x86 software on an Itanium 2 processor, make sure your operating system supports the IA-32 Execution Layer (IA-32 EL) technology. IA-32 EL improves performance of 32-bit software on the Itanium 2 processor. Operating systems that include or support IA-32 EL include Windows Server 2003 Enterprise Edition, Windows Server 2003 Datacenter Edition, Windows XP 64-bit Edition, and most current Linux distributions that support Itanium 2.

To download IA-32 EL for Red Hat Enterprise Linux 4; Red Hat Enterprise Linux 3 UP5; Red Hat Enterprise 3 UP4; SUSE Enterprise Server 9 SP1; or SUSE Enterprise Server Linux SP1, Kernel 2.6, go to the "IA-32 Execution Layer" page, at www.intel.com/cd/software/products/asmo-na/eng/219773.htm. To download the latest version of the IA-32 EL for Windows Server 2003, go to www.microsoft.com/windowsserver2003/64bit/ipf/ia32el.mspx.

For more information about IA-32 EL technology for Windows and Linux operating systems, see www.intel.com/design/itanium/downloads/25431803.pdf.


To use the IA-64 instruction set, programs must be recompiled for the new instruction set. The Itanium and Itanium 2 are currently supported by these operating systems: Microsoft Windows (XP 64-bit Itanium Edition and Windows Server 2003 for Itanium-based systems), Linux (from four distributor companies: Red Hat, SUSE, Caldera, and Turbo Linux), and two UNIX versions (Hewlett-Packard's HP-UX and IBM's AIX). Hewlett-Packard's fault-tolerant NonStop operating system also supports IA-64.

In September 2005, the Itanium Solutions Alliance was formed by founding sponsors Bull, Fujitsu, Fujitsu Siemens Computers, Hitachi, Hewlett-Packard, Intel, NEC, SGI, and Unisys. Charter members include BEA, Microsoft, Novell, Oracle, Red Hat, SAP, SAS, and Sybase. The alliance's goals include helping software vendors more easily move their applications to IA-64 and providing information about existing IA-64 applications and industry-specific solutions. You can learn more at www.itaniumsolutionsalliance.org.

Although the creation of the Itanium Solutions Alliance is a helpful development, the high cost of Itanium 2based solutions and their relatively poor performance when running existing x86 code make them suitable primarily for very large enterprise networks that are running native IA-64 applications. You can build your own Itanium 2based server by using motherboards from vendors such as Supermicro (www.supermicro.com), but if you're looking at four-way or smaller solutions, you're likely to be better off with an AMD Opteron or Intel Xeon EMT64-based solution.

Itanium and Itanium 2 Specifications

The following features apply to both Itanium and Itanium 2 processors:

  • They have 16TB of physical memory addressing (44-bit address bus).

  • They have full 32-bit instruction compatibility in hardware.

  • They use EPIC technology, which enables up to 20 operations per cycle.

  • They have two integer and two memory units that can execute four instructions per clock.

  • They have two FMAC (floating-point multiply accumulate) units with 82-bit operands.

  • Each FMAC unit is capable of executing two floating-point operations per clock.

  • Two additional MMX units are capable of executing two single-precision floating-point operations each.

  • A total of eight single-precision floating-point operations can be executed every cycle.

  • They have 128 integer registers, 128 floating-point registers, 8 branch registers, and 64 predicate registers.

The Itanium 2 also has the following features:

  • 400MHz, 533MHz, or 667MHz CPU bus (versus 266MHz for Itanium)

  • 128-bit wide CPU bus (versus 64-bit for Itanium)

The Itanium and Itanium 2's technical details are listed in Table 2.27; Itanium versions are listed in Table 2.28, and Itanium 2 versions are listed in Table 2.29.

Table 2.27. Intel Itanium and Itanium 2 Technical Details

Processor

Processor Speed

L2 Cache

L3 Cache Size

FSB Speed

Memory Bus Width

Bandwidth

Number of Transistors

Itanium

733MHz, 800MHz

96KB

2MB[1] or 4MB[1]

266MHz

64-bit

2.1GBps

25 million (core), 150 or 300 million (cache)

Itanium 2

900MHz

256KB

1.5MB[2]

400MHz

128-bit

6.4GBps

221 million

Itanium 2

1GHz[3], 1.3GHz[3]

256KB

3MB[2]

400MHz

128-bit

6.4GBps

221 million

Itanium 2

1.4GHz[4]

256KB

1.5MB

400MHz

128-bit

6.4GBps

221 million

Itanium 2

1.6GHz[4]

256KB

3MB

400MHz, 533MHz

128-bit

6.4GBps, 8.5GBps

500 million

Itanium 2

1.4GHz, 1.5GHz[5], 1.6GHz[4]

256KB

4MB[2]

400MHz

128-bit

6.4GBps

410 million

Itanium 2

1.5GHz, 1.6GHz[5]

256KB

6MB[2]

400MHz

128-bit

6.4GBps

500 million

Itanium 2

1.66GHz[5]

256KB

6MB[2]

667MHz

128-bit

10.6GBps

500 million

Itanium 2

1.6GHz[5]

256KB

9MB[2]

400MHz

128-bit

6.4GBps

592 million

Itanium 2

1.66GHz[5]

256KB

9MB[2]

667MHz

128-bit

10.6GBps

592 million


[1] On-cartridge, full-speed unified 128 bits wide.

[2] On-die, full-speed unified 128 bits wide.

[3] Also available in low-voltage version.

[4] Optimized for dual-processor operation (DP Optimized).

[5] Optimized for multiple-processor operation.

Table 2.28. Intel Itanium Processor Models

S-Spec/QDF Number

Core Stepping

CPUID

Core Clock Speed (MHz)

FSB Speed (MHz)

L3 Size (MB)

SL4LT

C0

0007000604h

733

266

2

SL4LS

C0

0007000604h

733

266

4

SL5VS

C1

0007000704h

733

266

2

SL5VT

C1

0007000704h

733

266

4

SL6RH

C2

0007000804h

733

266

2

SL4LR

C0

0007000604h

800

266

2

SL4LQ

C0

0007000604h

800

266

4

SL5VU

C1

0007000704h

800

266

2

SL5VW

C1

0007000704h

800

266

4

SL6RK

C2

0007000804h

800

266

2

SL6RL

C2

0007000804h

800

266

4


Table 2.29. Intel Itanium 2 Processor Models

S-Spec Number

Processor Stepping

CPUID1

Core Clock Speed (MHz)

FSB Speed (MHz)

L3 Size (MB)

Code Name

SL67W

B3

001F000704h

900

400

1.5

McKinley

SL6P6

B3

001F000704h

900

400

1.5

McKinley

SL754

B1

001F010504h

1000

400

1.5

Deerfield

SL67U

B3

001F000704h

1000

400

1.5

McKinley

SL6P5

B3

001F000704h

1000

400

1.5

McKinley

SL67V

B3

001F000704h

1000

400

3

McKinley

SL6P7

B3

001F000704h

1000

400

3

McKinley

SL6XD

B1

001F010504h

1300

400

3

Madison

SL7SD

A1

001F020104h

1300

400

3

Madison

SL8CY

A2

001F020204h

1300

400

3

Madison

SL76K

B1

001F010504h

1400

400

1.5

Madison

SL7FP

B1

001F010504h

1400

400

3

Madison

SL6XE

B1

001F010504h

1400

400

4

Madison

SL8CX

A2

001F020204h

1500

400

4

Madison

SL7ED

A1

001F020104h

1500

400

4

Madison

SL6XF

B1

001F010504h

1500

400

6

Madison

SL7FQ

B1

001F010504h

1600

400

3

Madison

SL7EC

A1

001F020104h

1600

400

3

Madison

SL8CW

A2

001F020204h

1600

400

3

Madison

SL8CV

A2

001F020204h

1600

400

6

Madison

SL7EB

A1

001F020104h

1600

400

6

Madison

SL87H

A1

001F020104h

1600

400

9

Madison

SL8CU

A2

001F020204h

1600

400

9

Madison

SL7EF

A1

001F020104h

1600

533

3

Madison

SL8CZ

A2

001F020204h

1600

533

3

Madison

SL8JK

A2

001F020204h

1660

667

6

Madison

SL8JJ

A2

001F020204h

1660

667

9

Madison


Itanium 2 versions with 1.5MB or 3MB of L3 cache are designed for use in single- or dual-processor systems, and versions with 6MB and 9MB of L3 cache are designed for use in multiple-processor systems. Generally, you should use only the same stepping for a multiple-processor configuration. However, Intel has tested the following combinations:

  • SL7SD and SL8CY

  • SL7ED and SL8CX

  • SL7EC and SL8CW

  • SL7EB and SL8CV

  • SL87H and SL8CU

  • SL7EF and SL8CZ

Itanium and Itanium 2 were initially based on 0.18-micron technology. The 0.13-micron Madison and low-voltage Deerfield versions of the Itanium 2 were officially introduced in 2003. The Deerfield is a low-voltage version of Madison. As with other processors using smaller technologies, the switch to 0.13-micron technology allows for higher core clock speeds and larger memory caches.

AMD Athlon MP Processors

AMD's first server-class processor was the Athlon MP, based on the AMD Athlon and Athlon XP. Introduced in 2001, the Athlon MP supports up to two-way configurations and was a popular choice for cost-sensitive "white box" servers, including rack-mounted servers, before the development of the AMD Opteron processor. The leading vendor of Athlon MPbased motherboards for servers and workstations is Tyan (www.tyan.com).

There are four major models of the Athlon MP:

  • The Athlon MP Model 6 is derived from the AMD Athlon Model 4, code-named Thunderbird.

  • The Athlon MP Model 6 OPGA is derived from the AMD Athlon XP Model 6, code-named Palomino.

  • The Athlon MP Model 8 is derived from the AMD Athlon XP Model 8, code-named Thoroughbred.

  • The Athlon MP Model 10 is also derived from the AMD Athlon XP Model 8 but features 512KB of L2 cache.

The Athlon MP Model 6 OPGA, Athlon MP Model 8, and Athlon MP Model 10 use the same plus (+) numbering scheme introduced by the Athlon XP rather than the actual clock speed of the processor for the model number. We've never found this type of numbering system useful (although AMD continues to use it with its Opteron and other current processor lines). It is more useful to look at the processors' actual features, which are shown in Table 2.30.

Table 2.30. Athlon MP Processors

Model

Model Number

Actual Clock Speed (MHz)

L2 Cache Size (KB)

Core Voltage (V DC)

Typical Thermal Power (W)

Max. Die Temperature (°Celsius)

Model 6

1000

1000

256

1.75

41.3

95

Model 6

1200

1200

256

1.75

49.1

95

Model 6 OPGA

1500+

1333

256

1.75

53.8

95

Model 6 OPGA

1600+

1400

256

1.75

56.3

95

Model 6 OPGA

1800+

1533

256

1.75

58.9

95

Model 6 OPGA

1900+

1600

256

1.75

58.9

95

Model 6 OPGA

2000+

1667

256

1.75

58.9

95

Model 6 OPGA

2100+

1733

256

1.75

58.9

95

Model 8

2000+

1667

256

1.60

52.8

90

Model 8

2200+

1800

256

1.65

54.5

90

Model 10

2600+

2000

512

1.60

47.2

90

Model 10

2800+

2133

512

1.60

47.2

90


All Athlon MP processors use the same Socket A (Socket 462) interface introduced for the AMD Athlon.

As Table 2.30 shows, the AMD Athlon MP Model 10 is the best of the four Athlon MP models for two reasons: Model 10 variants feature double the L2 cache of previous versions, and Model 10 variants run cooler than other versions. The AMD Opteron (described in the next section) has largely replaced the Athlon MP and offers a much wider range of motherboard support.

An Athlon MP processor is shown in Figure 2.40.

Figure 2.40. The AMD Athlon MP processor is a dual-processorcapable version of the AMD Athlon and Athlon XP processors.

(Photograph used by permission of AMD Corporation.)


AMD Opteron Processors

The AMD Opteron, introduced in 2003, was the first 64-bit processor to provide a seamless, no-compromise transition between current 32-bit operating systems and applications and 64-bit operating systems and applications. Unlike the Intel Itanium and Itanium 2, which provide relatively poor x86 performance because their native 64-bit mode (IA-64) uses a different processor architecture, the Opteron uses a fully compatible 64-bit extension of x86 architecture known as AMD64.

For more information about the differences between IA-64 and AMD64, see "64-Bit Processor Modes," p. 52.


The Opteron has a second major distinction: It was the first x86-compatible processor with an integrated memory controller. The Opteron uses matched pairs of DDR memory for dual-channel memory access, enabling very high memory performance and very low latency when accessing memory.

Figure 2.41 illustrates an AMD Opteron processor.

Figure 2.41. The AMD Opteron family can be scaled up to eight-way servers in its 800-series version. (Photograph used by permission of AMD Corporation.)


The Opteron is divided into three series: the 100 Series (single-processor systems), 200 Series (one- or two-way systems), and 800 Series (up to eight-way systems). The following are the major features of single-core Opteron processors:

  • 128KB L1 cache

  • 1MB L2 cache

  • Initial clock speeds of 1.4GHz2.2GHz

  • Three 6.4MBps HyperTransport links to the chipset

  • 940-pin socket (most 100, all 200 and 800 series)

  • 939-pin socket (some 100 series)

  • Integrated memory controller

  • 128-bit plus ECC dual-channel memory bus

  • Maximum addressable memory of 1TB (40-bit physical) and 256TB (48-bit virtual)

  • AMD64 architecture

Socket 940 versions of the Opteron require registered memory. In 2005, AMD introduced 100 series Opteron processors in Socket 939. Socket 939 uses standard DDR memory, enabling you to build a lower-cost single-processor server than with Socket 940 processors.

Opteron processors are available in three wattage ranges:

  • Standard Opteron processors use from 82.1 to 92.6 watts of power, depending on clock speed and manufacturing technology.

  • HE processors use 55 watts of power.

  • EE processors use 30 watts of power.

HE and EE processors are recommended for use in rack-mounted or blade servers, as well as in other environments in which processor cooling can be difficult.

AMD Opteron processors are available in single-core and dual-core versions. Single-core versions were originally manufactured using a .13-micron silicon-on-insulator (SOI) process, but recent versions have switched to a .09-micron (90-nanometer) SOI process. Table 2.31 cross-references model numbers and clock speeds for various single-core AMD Opteron models.

Table 2.31. AMD Single-Core Opteron Processors

Clock Speed (GHz)

Single Processor

Dual Processor

Multiprocessor

1.4

140[1]

240[1]

840[1]

1.6

142

242[2]

842[2]

1.8

144[2],[4]

244[2]

844[2]

2.0

146[3],[4]

246[2],[3]

846[2],[3]

2.2

148[4]

248[2],[3]

848[2],[3]

2.4

150[4]

250[2],[3]

850[2],[3]

2.6

152[4]

252[5]

852[5]

2.8

154[6]

254[5]

854[5]


[1] EE (30W) low-power version also available.

[2] Manufactured in .13- and .09-micron versions.

[4] Socket 939 (.09-micron) version available.

[3] HE (55W) low-power version also available.

[5] Manufactured in .09-micron version only.

[6] Available only in Socket 939 version.

You can build an Opteron-based server with up to eight processors, and Opteron-based servers are also available from most major server vendors.

Dual-Core Opteron Processors

From the beginning, AMD's Opteron processors for servers were designed for dual-core operation, with space in the original design for an integrated crossbar memory controller. Dual-core processors enable you to have the virtual equivalent of a two-way server in a low-cost single-processor model. Larger server configurations also benefit.

To learn more about the benefits of multiple processors and dual-core processors, see "Multiple CPUs," p. 37.


AMD introduced dual-core Opteron processors in 2005; all dual-core Opterons use the .09-micron SOI manufacturing process. Any Opteron motherboard that supports .09-micron Opteron processors is a candidate for an upgrade to a dual-core processor. You can contact your motherboard or server vendor for details. A BIOS upgrade may be necessary on some models.

Caution

Because of the dual-core design, the dual-core Opteron 175 and 180 processors require 110W. This is 15 watts more than the maximum for single-core or other dual-core Opteron processors. Make sure your server offers adequate cooling.


All dual-core Opterons offer 2MB of L2 cache (1MB per core), and versions are available for both Socket 940 (200 and 800 series) and Socket 939 (100 series). Some Socket 940 versions are available in the reduced-wattage HE series.

Table 2.32 cross-references model numbers and clock speeds for dual-core Opteron processors.

Table 2.32. AMD Dual-Core Opteron Processors

Clock Speed (GHz)

Single Processor

Dual Processor

Multiprocessor

1.6

260[1]

860[1]

1.8

165[2]

265[1]

865[1]

2.0

170[2]

270[1]

870[1]

2.2

175[2]

275

875

2.4

180[2]

280

880


[1] HE (55W) low-power version also available.

[2] Available only in Socket 939 version.

If you are already using an Opteron-based server that supports upgrading to dual-core processors, you can significantly improve the performance of your server by swapping processors. If you are building a server, using dual-core processors from the start provides you with better multitasking and the ability to handle greater loads, which can help you use your current hardware longer before upgrading.




Upgrading and Repairing Servers
Upgrading and Repairing Servers
ISBN: 078972815X
EAN: 2147483647
Year: 2006
Pages: 240

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net