< Day Day Up > 

Agrawal, R.,Imielinski, T., & Swami, A. (1993, May). Mining association rules between sets of items in large databases. Paper presented at the ACM SIGMOD International Conference Management of Data, Washington DC.

Anderson, D.,Anderson, E.,Lesh, N.,Marks, J.,Perlin, K.,Ratajczak, D., & Ryall, K. (2000). Human Guided Simple Search: Combining information visualization and heuristic search. Paper presented at the Proceedings of the Workshop on New Paradigms in Information Visualization and Manipulation. In conjunct on with the 8th ACM international conference on Information and Knowledge Management, Kansas City, MO.

Anderson, P.,Smith, R., & Zhang, Z. (1996, January). FRUSTRUM: A novel distortion oriented display for demanding applications. Paper presented at the Proceedings of SPIE Visual Data Exploration and Analysis III, San Jose, CA.

Ankherst, M.,Breunig, M. M.,Kriegel, H.-P., & Sander, J. (1999). OPTICS: Ordering points to identify cluster structure. Paper presented at the ACM SIGMOD International Conference on Management of Data, Philadelphia, PA.

Asimov, D. (1985). The Grand Tour: A Tool for Viewing Multidimensional Data. SIAM Journal of Science and Stat. Comp., 6, 128–143.

Asimov, D. & Buja, A. (1995). Grand Tour and Projection Pursuit. Journal of Computational and Graphical Statistics, 4(3), 155–172.

Barass, S. (1995). Personify: A Toolkit for Perceptually Meaningful Sonification. Paper presented at the Australian Computer Music Conference ACMA '95.

Brin, S. & Page, L. (1998). Dynamic Data Mining: Exploring Large Rule Spaces by Sampling. Stanford University. Retrieved October 25, 2001, 2001, from the World Wide Web at

Brin, S.,Motwani, R.,Ullman, J. D., & Tsur, S. (1997). Dynamic Itemset Counting and Implication Rules for Market Basket Data. SIGMOD Record (ACM Special Interest Group on the Management of Data), 26(2), 255–276.

Bruss, I. & Frick, A. (1996). Fast interactive 3-D graph visualization. Paper presented at the Proceeding of Graph Drawing.

Buxton, W. (1986). Chunking and phrasing and the design of human computer dialogues. Paper presented at the Proceedings of the IFIP 10th World Computer Congress.

Carr, D.,LittleField, R.,Nicholson, W., & Littlefield, J. (1987). Scatterplot Matrices for large N. JASA, 82(398), 424–436.

Chu, H. K. & Wong, M. H. (1999, August). Interactive data analysis on numeric-data. Paper presented at the 1999 International Symp. Database Engineering and Applications, Montreal, Canada.

Dix, A.,Finlay, J.,Abowd, G., & Beale, R. (1998). Human Computer Interaction (2nd Ed.). Hemel Hempstead, UK: Prentice Hall Europe.

Ester, M.,Kriegel, H.-P.,Sander, J., & Xu, X. (1996, August). A density-based algorithm for discovering clusters in large spatial databases with noise. Paper presented at the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR.

Faloutsos, C. A. & Lin, K.-I. (1995). FastMap: A fast algorithm for indexing data-mining and visualization of traditional and multimedia datasets. Paper presented at the 1995 ACM SIGMOD, San Jose, CA.

Fasulo, D. (1999). An Analysis of Recent Work on Clustering Algorithms (Tech. Rep.). Department of Computer Science\& Engineering, University of Washington, Seattle.

Fox, E. A. (2001). Information Storage and Retrieval Lecture Notes. Retrieved September 10, 2001, from the World Wide Web at

Furnas, G. W. (1986). Generalised fisheye views. Paper presented at the Proceedings of CHI' 86, New York.

Garner, W. R.,Hake, H. W., & Erikson, C. W. (1956). Operationism and the Concept of Perception. Psychological Review, 63, 149–159.

Gross, M. H.,Sprenger, T. C., & Finger, J. (1997). Visualizing information on a sphere. Paper presented at the Information Visualization, Phoenix, AZ.

Han, J. & Kamber, M. (2001). Data Mining: Concepts and Techniques. San Francisco, CA: Morgan Kaufmann.

Hao, M. C.,Dayal, U.,Hsu, M.,Sprenger, T., & Gross, M. H. (2000). Visualization of Directed Associations in e-Commerce Transaction Data. Palo Alto: Hewlett Packard Research Laboratories.

Hartigan, J. (1975). Clustering Algorithms. New York: John Wiley & Sons.

Hilderman, R. J. & Hamilton, H. J. (1999). Knowledge Discovery and Interestingness Measures: A Survey (Tech. Rep. CS 99–04), Department of Computer Science, University of Regina.

Hinneburg, A. & Keim, D. A. (1999a, September). Optimal grid-clustering: Towards breaking the curse of dimensionality in high dimensional clustering. Paper presented at the 25th VLDB Conference, Edinburgh, Scotland.

Hinneburg, A. & Keim, D. A. (1999b). A: (Tutorial) Clustering techniques for large data sets: From the past to the future. Paper presented at the SIGMOD Conference, Philadelphia.

Hinneburg, A.,Keim, D. A., & Wawryniuk, M. (1999). HD\_Eye: Visual Mining of High Dimensional Data. IEEE Computer Graphics and Applications, 19(5), 22–31.

Hofman, H.,Siebes, A. P. J. M., & Wilhelm, A. F. X. (2000). Visualizing association rules with interactive mosaic plots. Paper presented at the KDD 2000, Boston, MA.

Jain, A. K. & Dubes, R. C. (1988). Algorithms for Clustering Data. Englewood Cliffs, NJ: Prentice Hall.

John, Rosenbloom, P. S., & Newell, A. (1985). A theory of stimulus-response compatibility applied to human computer interaction. Paper presented at the Proceedings of CHI' 85.

Kim, S.-S.,Kwon, S., & Cook, D. (2000). Interactive Visualization of Hierarchical Clusters using MDS and MST. Metrika, 51(1), 39–51.

Klemettinen, M.,Mannila, H., & Toivonen, H. (1997). A data mining methodology and its application to semi-automatic knowledge acquisition. Paper presented at the Proceedings of the 8th International Workshop on Database and Expert Systems Applications.

Klemettinen, M.,Mannila, H.,Ronkainen, T., & Verkano, A. I. (1994, November). Finding interesting rules from large sets of discovery association rules. Paper presented at the CIKM, Gaitherburg, MD.

Klemmer, E. T. & Frick, F. C. (1953). Assimilation of Information from Dot and Matrix Patterns. Experimental Psychology, 45, 15–19.

Koedinger, K. R. (1992, March). Emergent properties and structural constraints: Advantages of diagrammatic representations for reasoning and learning. Paper presented at the AAAI Spring Symposia on Reasoning with Diagrammatic Representations, Stanford University.

Koperski, K. & Han, J. (1995, August). Discovery of spatial association rules in geographic information databases. Paper presented at the 4th Int'l Symp. on Large Spatial Databases (SSD'95), Portland, ME.

Lesh, N.,Marks, J., & Patrignani, M. (2000). Interactive Partitioning (Tech. Rep.), Cambridge, MA: Mitsubishi Electronic Research Laboratory.

Li, S.,Vel, O. D., & Coomans, D. (1995). Comparative Performance Analysis of Non-Linear Dimensionality Reduction Methods (Tech. Rep.), James Cook University.

MacKinley, J. D.,Robertson, G. G., & Card, S. K. (1991). The perspective wall: Detail and context smoothly integrated. Paper presented at the Proceedings of CHI' 91, New York.

Mayo, E. (1945). The Social Problems of an Industrialized Society. Boston, MA: Harvard University Press.

Miller, G. A. (1956). The Magic Number Seven, Plus or Minus Two: Some Limits on our Capacity for Processing Information. Psychological Review, 63, 81–97.

Nag, B.,Deshpande, P. M., & DeWitt, D. J. (1999). Using a knowledge cache for interactive discovery of association rules. Paper presented at the KDD-99, San Diego, CA.

Nascimento, H. A. D. & Eades, P. (2001). Interactive graph clustering based upon user hints. Paper presented at the Proceedings of the Second International Workshop on Soft Computing Applied to Software Engineering, Enschede, The Netherlands.

Nielson, J. (1992). A Layered Interaction Analysis of Direct Manipulation. Retrieved September 10, 2001, from the World Wide Web at

Piatetsky-Shapiro, G. & Matthews, C.J. (1994). The interestingness of deviations. Paper presented at the AAAI-94 Workshop on Knowledge Discovery in Databases.

Rabejij, D. R. (2001, April). Greedy random: A novel algorithm for vehicle routing optimisation. Paper presented at the 39th National Junior Science and Humanities Symposium: Powerpoint presentation, Orlando, FL.

Raghavan, V. & Hafez, A. (2000). Dynamic Data Mining. Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, (pp. 220–229) Springer-Verlag.

Rainsford, C. & Roddick, J. (2000). Visualisation of temporal interval association rules. Paper present at the International Proceedings, 2nd International Conference on Intelligent Data Engineering and Automated Learning, Shatin, N. T., Hong Kong.

Rasmussen, E. (1992). Clustering Algorithms. In W. Frakes & R. Baeze-Yates (Eds.), Information Retrieval: Data Structures and Algorithms. Englewood Cliffs, NJ: Prentice-Hall.

Ribarsky, W.,Katz, J.,Jiang, F., & Holland, A. (1999). Discovery Visualization using Fast Clustering. IEEE Computer Graphics and Applications, 19(5), 32–39.

Roddick, J. & Ceglar, A. (2001). FIDO. Knowledge Discovery and Management Laboratory. Retrieved September 11, 2001, from the World Wide Web at

Sander, J.,Ester, M.,Kriegel, H.-P., & Xu, X. (1998). Density-Based Clustering in Spatial Databases: The Algorithm GDB Scan and its Applications. Data Mining and Knowledge Discovery, 2(2), 169–194.

Sarker, M. & Brown, M. (1994). Graphical Fisheye Views. Communications of the ACM, 37(12), 73–84.

Sheelagh, M.,Carpendale, T.,Cowperthwaite, D. J., & Francis, F. D. (1997). Extending Distortion Viewing from 2D to 3D. Computer Graphics, 17(4), 42–51.

Sheikholeslami, G.,Chatterjee, S., & Zhang, A. (1998, August). WaveCluster: A multi-resolution approach for very large spatial databases. Paper presented at the 24th VLDB conference, New York.

Shneiderman, B. (1996, September). The eyes have it: A task by data type taxonomy for information visualization. Paper presented at the 1996 IEEE Symp. on Visual Languages, Boulder, CO.

Silberschatz, A. & Tuzhilin, A. (1996). What Makes Patterns Interesting in Knowledge Discovery Systems. ISSS Trans. on Knowledge and Data Engineering, 8(6), 970–974.

Spence, S. & Apperley, M. (1982). Database navigation: An office environment for the professional. Paper presented at the Behaviour and Information Technology.

Sprenger, T. C.,Brunella, R., & Gross, M. H. (2000). H-Blob: A hierarchical visual clustering method using implicit surfaces. Paper presented at the IEEE Visualisation 2000, Salt Lake City, UT.

Srikant, R.,Vu, Q., & Agrawal, R. (1997). Mining association rules with item constraints. Paper presented at the 3rd International Conference on Knowledge Discovery and Data Mining, Newport Beach, CA.

Sundaresh, R. S. & Hudak, P. (1991). Incremental computation via partial evaluation. Paper presented at the 18th Annual ACM Symp. on POPL.

Toivonen, H. (1996, September). Sampling large databases for association rules. Paper presented at the Very Large DataBase Conference, Mumbai, India.

Tung, A. K. H.,Hou, J., & Han, J. (2001, April). Spatial clustering in the presence of obstacles. Paper presented at the International Conference on DataEngineering, Heidelberg, Germany.

Ward, M. O. (1994). XmdvTool: Integrating multiple methods for visualising multivariate data. Paper presented at the IEEE Visualization '94.

Wills, G. (1998). An interactive view for hierarchical clustering. Paper presented at the Information Visualization '98, Raleigh, NC.

Wong, P. C.,Cowley, W.,Foote, H.,Jurrus, E., & Thomas, J. (2000). Visualizing sequential patterns for text mining. Paper presented at the IEEE Sym. on Information Visualization 2000, SaltLake City, UT.

Wong, P. C.,Whitney, P., & Thomas, J. (1999). Visualizing Association Rules for Text Mining (DE-AC06-76RLO 1830). Richland: Pacific Northwest National Laboratory.

Wrobel, S.,Wettschereck, D.,Verkamo, I.,Siebes, A.,Mannila, H.,Kwakkel, F., & Klosgen, W. (1996). User interactivity in very large scale data mining. Paper presented at the FGML-96 Annual Workshop of the GI Special Interest Group Machine Learning.

Xiao, Y. & Dunham, M. H. (2001, September). Interactive clustering for transaction data. Paper presented at the 3rd International Conference Data Warehousing and Knowledge Discovery, Munich, Germany.

Yang, L. (2000). n23Tool: A tool for exploring large relational datasets through dynamic projections. Paper presented at the 9th International Conference on Information and Knowledge Management CIKM 2000.

Young, F. (1987). Multidimensional Scaling: History, Theory and Applications. Hillsdale, NJ: Lawrence Erlbaum Associates.

 < Day Day Up > 

Managing Data Mining Technologies in Organizations(c) Techniques and Applications
Managing Data Mining Technologies in Organizations: Techniques and Applications
ISBN: 1591400570
EAN: 2147483647
Year: 2003
Pages: 174 © 2008-2017.
If you may any questions please contact us: