data mining: opportunities and challenges
Chapter I - A Survey of Bayesian Data Mining
Data Mining: Opportunities and Challenges
by John Wang (ed) 
Idea Group Publishing 2003
Brought to you by Team-Fly

Arnborg, S. & Sj din, G. (2001). On the foundations of Bayesianism. In A. Mohammad-Djarafi (ed.), Bayesian inference and maximum entropy methods in science and engineering, 20th International Workshop Gif-sur-Yvette, 2000. pp. 61 71. College Park, MD: AIP Press.

Benferhat, S., Dubois, D., Prade,& H. (1997). Nonmonotonic reasoning, conditional objects and possibility theory. Artificial Intelligence 92, 259 276.

Berger, J. O. (1985). Statistical decision theory and Bayesian Analysis. New York: Springer-Verlag.

Berger, J. O. (1994). An overview of robust Bayesian analysis (with discussion). Test, 3, 5 124.

Bernardo, J. M. &Smith, A. F. (1994). Bayesian theory. New York: Wiley.

Berthold, M. & Hand, D. (eds.). (1999). Intelligent data analysis, An introduction. New York: Springer-Verlag.

Carlin, B. P. & Louis, T. A. (1997). Bayes and empirical Bayes methods for data analysis. London: Chapman and Hall.

Cheeseman, P. & Stutz, J. (1995). Bayesian classification (AUTOCLASS): Theory and results. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining. Menlo Park: AAAI Press, ISBN: 0-262-56097-6.

Cox, D. R. & Wermuth, N. (1996). Multivariate dependencies. London: Chapman and Hall.

Dale, A. 1991. A history of inverse probability: From Thomas Bayes to Karl Pearson. Berlin: Springer.

de Finetti, B. (1974). Theory of probability. London: Wiley.

Doucet, A., de Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo Methods in practice. New York: Springer.

Gilks, W.R., Richardson, S., & Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo in practice. London: Chapman and Hall.

Glymour, C. & Cooper, G. (eds.). (1999). Computation, causation and discovery. Cambridge, MA: MIT Press.

Hall, H., Larsson, S. & Sedvall, G. (1999). HUBIN Web page,

Hand, D., Mannila, H. & Smyth, P. (2001). Principles of data mining. Cambridge, MA: MIT Press.

Heckerman, D. (1997). Bayesian networks for data mining. Data Mining and Knowledge Discovery 1, 79 119.

Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge University Press, ISBN: 0521592712.

Kumar, R., Raghavan, P., Rajagopalan, S., & Tomkins, A. (2001). Recommendation systems: A probabilistic analysis. JCSS: Journal of Computer and System Sciences 63(1): 42 61.

Lauritzen, S. L. (1996), Graphical models. Oxford, UK: Clarendon Press.

Madigan, D. & Raftery, A.E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam's window. J. American Statistical Ass. 428, 1535 1546.

Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge, UK: Cambridge University Press.

Ramoni, M. & Sebastiani, P. (1998). Parameter estimation in Bayesian networks from incomplete databases. Intelligent Data Analysis, 2(1).

Rose, D. J. (1970). Triangulated graphs and the elimination process. J. Math. Anal. Appl. 32, 597 609.

Royall, R. (2000). On the probability of observing misleading statistical evidence (with discussion). J. American Statistical Ass. 95, 760 780.

Savage, L. (1954). Foundations of statistics. New York: John Wiley & Sons.

Shafer, G. (1976). A mathematical theory of evidence. Princeton, NJ: Princeton University Press.

Wilson, N. (1996). Extended probability. In Proceedings of the 12th European Conference on Artificial Intelligence, Budapest, Hungary. Chichester: John Wiley and Sons, pp. 667 671.

Brought to you by Team-Fly

Data Mining(c) Opportunities and Challenges
Data Mining: Opportunities and Challenges
ISBN: 1591400511
EAN: 2147483647
Year: 2003
Pages: 194
Authors: John Wang © 2008-2017.
If you may any questions please contact us: