| < Day Day Up > |
|
If you're pressed for time with these labs, I suggest that you run Lab 3 first. As you've read in the chapter, recompiling the kernel takes a long time. If you have a slower computer, some of the commands required to recompile the kernel take a while to complete. You can use this time to log into a different terminal and run the other labs in this chapter.
1. | In this first lab, we'll look at setting up automatic connections to a shared network directory. While this lab uses files described in Chapter 4, it is focused on shell configuration files. For the purpose of this lab, assume your username is vaclav and you're mounting a shared NFS /mnt/inst directory from a remote computer with an IP address of 192.168.30.4. You're going to mount it in vaclav's home directory, in a blank directory named inst.
|
|
Answers
1. | This lab has two purposes: it is designed to help you understand mounted network directories and the login process. You can substitute the user, the shared network directory, and directories of your choice. But based on the premises in this lab, I would take the following steps:
|
2. | In this lab, we will test the quotas created in this chapter. You'll use the basic quota settings described in this chapter, and then copy files to fill up the home directory of a user who has a quota applied. The steps required for this lab are straightforward.
|
|
Answers
2. | The purpose of this lab is to get you some more practice with creating quotas for users. It's quite possible that you'll have to configure quotas on the Red Hat exams. While you may not have to test quotas in the way described in this lab, it will help you become familiar with the error messages that you'll see when you exceed a hard and then a soft quota limit. |
3. | This lab is more of a detailed kernel-building exercise than a typical lab in this book. The exercise will include concise steps on how to configure, install, and test a new kernel. While the Red Hat Exam Prep guide no longer specifies that you have to know how to recompile the kernel, it is something you will need to do at some point in time as a Linux system administrator. See the Lab Answer section at the end of this chapter for the exercise. |
|
Answers
3. | Before we can build a new kernel, we have to ensure we have all the correct RPM packages. You could do so by checking a list of RPMs as described. Alternatively, you can start the Package Management utility with the redhat-config-packages command. From this GUI utility, make sure you have the Kernel Development package group installed. As with the rest of this chapter and the Red Hat exams, this assumes that you have a PC with a 32-bit Intel type CPU. The procedures for other CPUs vary and are not, as of this writing, covered on the Red Hat exams. The following list of RPMs are associated with the source code: kernel-source-* glibc-kernelheaders-* glibc-devel-* cpp-* ncurses-* ncurses-devel-* binutils-* gcc-*
|
4. | In this fourth lab, you'll be updating your kernel from another source. One proviso-this lab will work only if there is a Red Hat RPM kernel file that is a later version from what is already installed on your computer. If you're running RHEL 3, you can still download and use one of the Fedora development kernel RPMs for the purpose of this exercise. (While there are no guarantees, the Fedora development kernel available as of this writing works fine on my RHEL 3 computer. However, there have been reported issues with various video cards and printer configurations.)
|
|
Answers
4. | Assuming everything works with the updated Red Hat RPM kernel package, you should not have to update anything, especially if your boot loader is GRUB. The steps described in the lab should help you confirm this through the appropriate configuration files on your RHEL 3 computer. |
| < Day Day Up > |
|