Arnold, F. H. 1998. Design by directed evolution. Accts. Chem. Res. 31: 125–131.

Arnold, F. H., and A. A. Volkov., 1999. Directed evolution of biocatalysts. Curr. Opin. Chem. Biol. 3: 54–59.

Balashov, S. P.,F. F. Litvin, and V. A. Sineshchekov., 1988. Photochemical processes of light energy transformation in bacteriorhodopsin. Physiochem. Biol. Rev. 8: 1–61.

Birge, R. R. 1990. Photophysics and molecular electronic applications of the rhodopsins. Annu. Rev. Phys. Chem. 41: 683–733.

Birge, R. R. 1994. Introduction to molecular and biomolecular electronics. Adv. Chem. 240: 1–14.

Birge, R. R. 1994b. Molecular and Biomolecular Electronics. Adv. Chem. 240: 596.

Birge, R. R., and C. F. Zhang., 1990. Two-photon spectroscopy of light adapted bacteriorhodopsin. J. Chem. Phys. 92: 7178–7195.

Birge, R. R.,A. F. Lawrence, and J. A. Tallent., 1991. Quantum effects, thermal statistics, and reliability of nanoscale molecular and semiconductor devices. Nanotechnology 2: 73–87.

Birge, R. R.,D. S. K. Govender, R. B. Gross, A. F. Lawrence, J. A. Stuart, J. R. Tallent, E. Tan, and B. W. Vought., 1994. Bioelectronics, three-dimensional memories, and hybrid computers. IEEE IEDM Tech. Digest 94: 3–6.

Birge, R. R.,B. Parsons, Q. W. Song, and J. R. Tallent., 1997. Protein-based three-dimensional memories and associative processors. In Molecular Electronics, eds. M. A. Ratner and J. Jortner, eds. 439–471. Oxford: Blackwell Science.

Birge, R. R.,N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise., 1999. Biomolecular electronics: Protein-based associative processors and volumetric memories. J. Phys. Chem. B. 103: 10746–10766.

Botstein, D., and D. Shortle., 1985. Strategies and applications of in vitro mutagenesis. Science 229: 1193–1201.

Chen, Z.,D. Govender, R. Gross, and R. Birge., 1995. Advances in protein-based three-dimensional optical memories. BioSystems 35: 145–151.

Crameri, A.,S. Raillart, E. Bermudez, and W. P. C. Stemmer., 1998. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391: 288–291.

d'Auria, L.,J. P. Huignard, C. Slezak, and C. Spitz., 1974. Experimental holographic read-write memory using 3-D storage. Appl. Opt. 13: 808–818.

Dvornikov, A. S., and P. M. Rentzepis., 1996. 3D Optical Memory Devices. System and Materials Characteristics. Proc. IEEE Nonvol. Mem. Tech. (INVMTC) 6: 40–44.

Ebrey, T. G. 1993. Light energy transduction in bacteriorhodopsin. In Thermodynamics of Membrane Receptors and Channels., 353–387. ed. M. Jackson, Boca Raton, Fla: CRC Press.

El-Sayed, M. A. 1992. On the molecular mechanisms of the solar to electric energy conversion by the other photosynthetic system in nature, bacteriorhodopsin. Accts. Chem. Res. 25: 279–286.

Ferretti, L.,S. S. Karnik, G. Khorana, M. Nassal, and D. D. Oprian., 1986. Total synthesis of a gene for bovine rhodopsin. Proc. Natl. Acad. Sci. USA 83: 599–603.

Fu, A. Y.,C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake., 1999. A microfabricated fluorescenceactivated cell sorter. Nat. Biotechnol. 17: 1109–1111.

Gergely, C.,C. Ganea, G. Groma, and G. Varo., 1993. Study of the photocycle and charge motions of the bacteriorhodopsin mutant D96N. Biophys. J. 65: 2478–2483.

Giver, L., and F. H. Arnold., 1998. Combinatorial protein design by in vitro recombination. Curr. Opin. Chem. Biol. 2: 335–338.

Gross, R. B.,K. C. Izgi, and R. R. Birge., 1992. Holographic thin films, spatial light modulators, and optical associative memories based on bacteriorhodopsin. Proc. SPIE 1662: 186–196.

Hampp, N.,A. Popp, C. Bräuchle, and D. Oesterhelt., 1992. Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRwt and its variants BRD85E and BRD96N. J. Phys. Chem. 96: 4679–4685.

Hampp, N.,R. Thoma, D. Zeisel, and C. Bräuchle., 1994. Bacteriorhodopsin variants for holographic pattern recognition. Adv. Chem. 240: 511–526.

Hayashi, N.,M. Welschof, M. Zewe, M. Braunagel, S. Dubel, F. Breitling, and M. Little., 1994. Simultaneous mutagenesis of antibody CDR regions by overlap extension and PCR. Biotechniques 17: 310–315.

Heanue, J. F.,M. C. Bashaw, and L. Hesselink., 1994. Volume holographic storage and retrieval of digital data. Science 265: 749–752.

International Technology Roadmap for Semiconductors (ITRS)., 1999. San Jose: Semiconductor Assocition.

Kandel, E. R.,J. H. Schwartz, and T. M. Jessell., 1991. Principles of Neural Science. 3d ed., 1135. New York: Mcgraw-Hill.

Kast, P., and D. Hilvert., 1997. 3D structural information as a guide to protein engineering using genetic selection. Curr. Opin. Struct. Biol. 7: 470–479.

Keyes, R. W. 1992. Electronic devices in large systems. AIP Conf. Proc. 262: 285–297.

Lanyi, J. K. 1992. Proton transfer and energy coupling in the bacteriorhodopsin photocycle. J. Bioenerg. Biomembr. 24: 169.

Lanyi, J. K., and G. Varo., 1995. The photocycles of bacteriorhodopsin. Isr. J. Chem. 35: 365–385.

Lawrence, A. F.,J. A. Stuart, D. L. Singh, and R. R. Birge., 1998. Bit-error sources in 3D optical memory: Experiments and models. Proc. SPIE 3468: 258–268.

Lo, K. M.,S. S. Jones, N. R. Hackett, and H. G. Khorana., 1984. Specific amino acid substitutions in bacterioopsin: Replacement of a restriction fragment in the structural gene by synthetic DNA fragments containing altered codons. Proc. Natl. Acad. Sci. USA 81: 2285–2289.

Luecke, H.,B. Schobert, H. T. Richter, J. P. Cartailler, and J. K. Lanyi., 1999. Structure of bacteriorhodopsin at 1.55 A resolution. J. Mol. Biol. 291: 899–911.

Lukashev, E. P., and B. Robertson., 1995. Bacteriorhodopsin retains its light-induced proton-pumping function after being heated to 140 °C. Bioelectrochem. Bioenerg. 37: 157–160.

Mathies, R. A.,S. W. Lin, J. B. Ames, and W. T. Pollard., 1991. From femtoseconds to biology: Mechanism of bacteriorhdopsin's light-driven proton pump. Annu. Rev. Biophys. Chem. 20: 491–518.

Meindl, J. D. 1993. Evolution of Solid-State Circuits: 1958-1992-20??. IEEE ISSCC Commemorative Supplement, 23–26.

Michnick, S. W., and F. H. Arnold., 1999. "Itching" for new strategies in protein engineering. Nat. Biotechnol. 17: 1159–1160.

Miercke, L. J. W.,M. C. Betlach, A. K. Mitra, R. F. Shand, S. K. Fong, and R. M. Stroud., 1991. Wild-type and mutant bacteriorhodopsins D85N, D96N, and R82Q: Purification to homogeneity, pH dependence of pumping and electron diffraction. Biochemistry 30: 3088–3098.

Misra, S.,R. Govindjee, T. G. Ebrey, N. Chen, J. X. Ma, and R. K. Crouch., 1997. Proton uptake and release are rate-limiting steps in the photocycle of the bacteriorhodopsin mutant E204Q. Biochemistry 36: 4875–4883.

Miyazaki, K., and F. H. Arnold., 1999. Exploring nonnatural evolutionary pathways by saturation mutagenesis: Rapid improvement of protein function. J. Mol. Evol. 49: 716–720.

Miyazaki, K.,P. L. Wintrode, R. A. Grayling, D. N. Rubingh, and F. H. Arnold., 2000. Directed evolution study of temperature adaptation in a psychrophilic enzyme. J. Mol. Biol. 297: 1015–1026.

Moore, J. C., and F. H. Arnold., 1996. Directed evolution of a para-nitrobenzyl esterase for aqueousorganic solvents. Nat. Biotechnol. 14: 458–467.

Ness, J. E.,M. Welch, L. Giver, M. Bueno, J. R. Cherry, T. V. Borchert, W. P. C. Stemmer, and J. Minshull., 1999. DNA shuffling of subgenomic sequences of subtilisin. Nat. Biotech. 17: 893–896.

Oesterhelt, D., and W. Stockenius., 1971. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature (London), New Biol. 233: 149–152.

Paek, E. G., and D. Psaltis., 1987. Optical associative memory using Fourier transform holograms. Opt. Eng. 26: 428–433.

Parthenopoulos, D. A., and P. M. Rentzepis., 1989. Three-dimensional optical storage memory. Science 245: 843–845.

Psaltis, D., and A. Pu., 1996. Holographic 3-D disks. Proc. IEEE Nonvol. Mem. Tech. (INVMTC) 6: 34–39.

Ratner, M. A., and J. Jortner., 1997. Molecular Electronics. Oxford: Blackwell Science.

Reidhaar-Olson, J. F., and R. T. Sauer., 1988. Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science 241: 53–57.

Schmidt-Dannert, C., and F. H. Arnold., 1999. Directed evolution of industrial enzymes. Trends Biotechnol. 17: 135–136.

Shao, Z.,H. Zhao, L. Giver, and F. H. Arnold., 1998. Random-priming in vitro recombination: An effective tool for directed evolution. Nucleic Acids Res. 26: 681–683.

Shen, Y.,C. R. Safinya, K. S. Liang, A. F. Ruppert, and K. J. Rothschild., 1993. Stabilization of the membrane protein bacteriorhodopsin to 140 C in two-dimensional films. Nature 366: 48–50.

Smith, M. 1985. In vitro mutagenesis. Ann. Rev. Genet. 19: 423–462.

Spiller, B.,A. Gershenson, F. H. Arnold, and R. C. Stevens., 1999. A structural view of evolutionary divergence. Proc. Natl. Acad. Sci. USA 96: 12305–12310.

Stemmer, W. P. C. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389–391.

Stemmer, W. P. C. 1994b. DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91: 10747–10751.

Stuart, J. A.,J. R. Tallent, E. H. L. Tan, and R. R. Birge., 1996. Protein-based volumetric memory. Proc. IEEE Nonvol. Mem. Tech. (INVMTC) 6: 45–51.

Watson, J. D.,M. Gilman, and J. Witkowski., 1992. Recombinant DNA. New York: Scientific American Books.

Yano, T.,S. Oue, and H. Kagamiyama., 1998. Directed evolution of an aspartate aminotransferase with new substrate specificities. Proc. Natl. Acad. Sci. USA 95: 5511–5515.

Zeisel, D., and N. Hampp., 1992. Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRwt and the variant BRD96N. J. Phys. Chem. 96: 7788–7792.

Zhao, H., and F. H. Arnold., 1997. Combinatorial protein design: Strategies for screening protein libraries. Curr. Opin. Struct. Biol. 7: 480–485.

Zhao, H.,L. Giver, Z. Shao, J. A. Affholter, and F. H. Arnold., 1998. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotech. 16: 258–261.

Zhao, H.,J. C. Moore, A. A. Volkov, and F. H. Arnold., 1999. Methods for optimizing industrial enzymes by directed evolution. In Manual of industrial microbiology and biotechnology. A. L. Demain and J. E. Davies eds. 597–604. Washington, D.C.: American Society for Microbiology.

Zimanyi, L., and J. K. Lanyi., 1993. Deriving the intermediate spectra and photocycle kinetics from timeresolved difference spectra of bacteriorhodopsin. The simpler case of the recombinant D96N protein. Bio-phys. J. 64: 240–251.