Chapter 3. Tuning TCP: Transport Layer

 < Day Day Up > 

This chapter describes some of key Transport Control Protocol (TCP) tunable parameters related to performance tuning. More importantly it describes how these tunables work, how they interact with each other, and how they impact network traffic when they are modified.

Applications often recommend TCP settings for tunable parameters, but offer few details on the meaning of the parameters and adverse effects that might result from the recommended settings. This chapter is intended as a guide to understanding those recommendations. This chapter is intended for network architects and administrators who have an intermediate knowledge of networking and TCP. This is not an introductory chapter on TCP terminology. The concepts discussed in this chapter build on basic terminology concepts and definitions. For an excellent resource, refer to Internetworking with TCP/IP Volume 1, Principles, Protocols, and Architectures by Douglas Comer, Prentice Hall, New Jersey.

Network architects responsible for designing optimal backbone and distribution IP network architectures for the corporate infrastructure are primarily concerned with issues at or below the IP layer network topology, routing, and so on. However, in data center networks, servers connect either to the corporate infrastructure or the service provider networks, which host applications. These applications provide networked application services with additional requirements in the area of networking and computer systems, where the goal is to move data as fast as possible from the application out to the network interface card (NIC) and onto the network. Designing network architectures for performance at the data center includes looking at protocol processing above Layer 3, into the transport and application layers. Further, the problem becomes more complicated because many clients' stateful connections are aggregated onto one server. Each client connection might have vastly different characteristics, such as bandwidth, latencies, or probability of packet loss. You must identify the predominant traffic characteristics and tune the protocol stack for optimal performance. Depending on the server hardware, operating system, and device driver implementations, there could be many possible tuning configurations and recommendations. However, tuning the connection-oriented transport layer protocol is often most challenging.

This chapter includes the following topics:

  • "TCP Tuning Domains" on page 38 provides an overview of TCP from a tuning perspective, describing the various components that contain tunable parameters and where they fit together from a high level, thus showing the complexities of tuning TCP.

  • "TCP State Model" on page 48 proposes a model of TCP that illustrates the behavior of TCP and the impact of tunable parameters. The system model then projects a network traffic diagram baseline case showing an ideal scenario.

  • "TCP Congestion Control and Flow Control Sliding Windows" on page 53 shows various conditions to help explain how and why TCP tuning is needed and which are the most effective TCP tunable parameters needed to compensate for adverse conditions.

  • "TCP and RDMA Future Data Center Transport Protocols" on page 62 describes TCP and RDMA, promising future networking protocols that may overcome the limitations of TCP.

     < Day Day Up > 


    Networking Concepts and Technology. A Designer's Resource
    Networking Concepts and Technology: A Designers Resource
    ISBN: 0131482076
    EAN: 2147483647
    Year: 2003
    Pages: 116

    flylib.com © 2008-2017.
    If you may any questions please contact us: flylib@qtcs.net