Examples


Example 19.1. Path Analysis: Stability of Alienation

The following covariance matrix from Wheaton, Muthen, Alwin, and Summers (1977) has served to illustrate the performance of several implementations for the analysis of structural equation models. Two different models have been analyzed by an early implementation of LISREL and are mentioned in J reskog (1978). You also can find a more detailed discussion of these models in the LISREL VI manual (J reskog and S rbom 1985). A slightly modified model for this covariance matrix is included in the EQS 2.0 manual (Bentler 1985, p. 28). The path diagram of this model is displayed in Figure 19.1. The same model is reanalyzed here by PROC CALIS. However, for the analysis with the EQS implementation, the last variable (V6) is rescaled by a factor of 0.1 to make the matrix less ill-conditioned. Since the Levenberg-Marquardt or Newton-Raphson optimization techniques are used with PROC CALIS, rescaling the data matrix is not necessary and, therefore, is not done here. The results reported here reflect the estimates based on the original covariance matrix.

data Wheaton(TYPE=COV);  title "Stability of Alienation";  title2 "Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)";     _type_ = 'cov'; input _name_ $ v1-v6;     label v1='Anomia (1967)' v2='Anomia (1971)' v3='Education'           v4='Powerlessness (1967)' v5='Powerlessness (1971)'           v6='Occupational Status Index';     datalines;  v1   11.834     .        .        .       .        .  v2    6.947    9.364     .        .       .        .  v3    6.819    5.091   12.532     .       .        .  v4    4.783    5.028    7.495    9.986    .        .  v5   -3.839   -3.889   -3.841   -3.625   9.610     .  v6  -21.899  -18.831  -21.748  -18.775  35.522  450.288  ;  proc calis cov data=Wheaton tech=nr edf=931 pall;     Lineqs        V1 =         F1                  + E1,        V2 =    .833 F1                  + E2,        V3 =         F2                  + E3,        V4 =    .833 F2                  + E4,        V5 =         F3                  + E5,        V6 = Lamb (.5) F3                + E6,        F1 = Gam1(-.5) F3                + D1,        F2 = Beta (.5) F1 + Gam2(-.5) F3 + D2;     Std        E1-E6 = The1-The2 The1-The4 (6 * 3.),        D1-D2 = Psi1-Psi2 (2 * 4.),        F3    = Phi (6.) ;     Cov        E1 E3 = The5 (.2),        E4 E2 = The5 (.2);  run; 

The COV option in the PROC CALIS statement requests the analysis of the covariance matrix. Without the COV option, the correlation matrix would be computed and analyzed. Since no METHOD= option has been used, maximum likelihood estimates are computed by default. The TECH=NR option requests the Newton-Raphson optimization method. The PALL option produces the almost complete set of displayed output, as displayed in Output 19.1.1 through Output 19.1.11. Note that, when you specify the PALL option, you can produce large amounts of output. The PALL option is used in this example to show how you can get a wide spectrum of useful information from PROC CALIS.

Output 19.1.1: Model Specification
start example
                                  Stability of Alienation                     Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                                      The CALIS Procedure                   Covariance Structure Analysis: Pattern and Initial Values                                     LINEQS Model Statement                                Matrix      Rows    Columns    ------Matrix Type------        Term 1            1    _SEL_          6         17    SELECTION                           2    _BETA_        17         17    EQSBETA       IMINUSINV                           3    _GAMMA_       17          9    EQSGAMMA                           4    _PHI_          9          9    SYMMETRIC                                   The 8 Endogenous Variables             Manifest        v1 v2   v3  v4  v5  v6             Latent          F1 F2                                   The 9 Exogenous Variables             Manifest             Latent          F3             Error           E1 E2 E3 E4 E5 E6 D1 D2                                     Stability of Alienation                     Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                   Covariance Structure Analysis: Pattern and Initial Values                             v1      =   1.0000 F1   +  1.0000 E1                             v2      =   0.8330 F1   +  1.0000 E2                             v3      =   1.0000 F2   +  1.0000 E3                             v4      =   0.8330 F2   +  1.0000 E4                             v5      =   1.0000 F3   +  1.0000 E5                             v6      =   0.5000*F3   +  1.0000 E6                                                Lamb                                    Stability of Alienation                     Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                   Covariance Structure Analysis: Pattern and Initial Values                     F1      =  -0.5000*F3   +  1.0000 D1                                        Gam1                     F2      =   0.5000*F1   + -0.5000*F3   + 1.0000 D2                                        Beta           Gam2                                     Stability of Alienation                     Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                   Covariance Structure Analysis: Pattern and Initial Values                                Variances of Exogenous Variables                                Variable Parameter      Estimate                                F3       Phi             6.00000                                E1       The1            3.00000                                E2       The2            3.00000                                E3       The1            3.00000                                E4       The2            3.00000                                E5       The3            3.00000                                E6       The4            3.00000                                D1       Psi1            4.00000                                D2       Psi2            4.00000                             Covariances Among Exogenous Variables                               Var1 Var2 Parameter      Estimate                               E1   E3   The5            0.20000                               E2   E4   The5            0.20000 
end example
 
Output 19.1.2: Modeling Information, Simple Statistics, and Parameter Vector
start example
                                                Stability of Alienation                                   Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                                Covariance Structure Analysis: Maximum Likelihood Estimation                                   Observations         932    Model Terms              1                                   Variables              6    Model Matrices           4                                   Informations          21    Parameters              12                                           Variable                      Mean       Std Dev                                v1    Anomia (1967)                         0       3.44006                                v2    Anomia (1971)                         0       3.06007                                v3    Education                             0       3.54006                                v4    Powerlessness (1967)                  0       3.16006                                v5    Powerlessness (1971)                  0       3.10000                                v6    Occupational Status Index             0      21.21999                                                   Stability of Alienation                                   Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                                Covariance Structure Analysis: Maximum Likelihood Estimation                                                        Covariances                                             v1             v2             v3            v4             v5             v6  v1   Anomia (1967)                11.83400000     6.94700000     6.81900000    4.78300000    -3.83900000    -21.8990000  v2   Anomia (1971)                 6.94700000     9.36400000     5.09100000    5.02800000    -3.88900000    -18.8310000  v3   Education                     6.81900000     5.09100000    12.53200000    7.49500000    -3.84100000    -21.7480000  v4   Powerlessness (1967)          4.78300000     5.02800000     7.49500000    9.98600000    -3.62500000    -18.7750000  v5   Powerlessness (1971)         -3.83900000    -3.88900000    -3.84100000   -3.62500000     9.61000000     35.5220000  v6   Occupational Status Index   -21.89900000   -18.83100000   -21.74800000  -18.77500000    35.52200000    450.2880000                                       Determinant       6080570    Ln     15.620609                                                    Stability of Alienation                                   Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                                Covariance Structure Analysis: Maximum Likelihood Estimation                                                 Vector of Initial Estimates                                   Parameter      Estimate    Type                              1    Beta            0.50000    Matrix Entry: _BETA_[8:7]                              2    Lamb            0.50000    Matrix Entry: _GAMMA_[6:1]                              3    Gam1           -0.50000    Matrix Entry: _GAMMA_[7:1]                              4    Gam2           -0.50000    Matrix Entry: _GAMMA_[8:1]                              5    Phi             6.00000    Matrix Entry: _PHI_[1:1]                              6    The1            3.00000    Matrix Entry: _PHI_[2:2]  _PHI_[4:4]                              7    The2            3.00000    Matrix Entry: _PHI_[3:3]  _PHI_[5:5]                              8    The5            0.20000    Matrix Entry: _PHI_[4:2]  _PHI_[5:3]                              9    The3            3.00000    Matrix Entry: _PHI_[6:6]                             10    The4            3.00000    Matrix Entry: _PHI_[7:7]                             11    Psi1            4.00000    Matrix Entry: _PHI_[8:8]                             12    Psi2            4.00000    Matrix Entry: _PHI_[9:9] 
end example
 
Output 19.1.3: Predetermined Elements
start example
                                                Stability of Alienation                                   Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                                Covariance Structure Analysis: Maximum Likelihood Estimation                                    Predetermined Elements of the Predicted Moment Matrix                                             v1             v2             v3            v4             v5             v6  v1   Anomia (1967)                          .              .              .             .              .              .  v2   Anomia (1971)                          .              .              .             .              .              .  v3   Education                              .              .              .             .              .              .  v4   Powerlessness (1967)                   .              .              .             .              .              .  v5   Powerlessness (1971)                   .              .              .             .              .              .  v6   Occupational Status Index              .              .              .             .              .              .                                          Sum of Squared Differences             0 
end example
 
Output 19.1.4: Optimization
start example
                                           Stability of Alienation                              Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                           Covariance Structure Analysis: Maximum Likelihood Estimation                                     Parameter Estimates                   12                                     Functions (Observations)              21                                                Optimization Start   Active Constraints                                  0  Objective Function                      119.33282242   Max Abs Gradient Element                 74.016932345                                                                                                         Ratio                                                                                                       Between                                                                                                        Actual                                                                   Objective    Max Abs                    and                       Function         Active        Objective     Function   Gradient              Predicted  Iter     Restarts       Calls    Constraints         Function       Change    Element     Ridge       Change     1            0           2              0          0.82689        118.5     1.3507         0       0.0154     2            0           3              0          0.09859       0.7283     0.2330         0        0.716     3            0           4              0          0.01581       0.0828    0.00684         0        1.285     4            0           5              0          0.01449      0.00132   0.000286         0        1.042     5            0           6              0          0.01448     9.936E-7   0.000045         0        1.053     6            0           7              0          0.01448     4.227E-9   1.685E-6         0        1.056                                               Optimization Results   Iterations                                          6 Function Calls                                      8   Jacobian Calls                                      7  Active Constraints                                 0   Objective Function                       0.0144844811 Max Abs Gradient Element                 1.6847829E-6   Ridge                                               0 Actual Over Pred Change                  1.0563204982        ABSGCONV convergence criterion satisfied. 
end example
 
Output 19.1.5: Predicted Model Matrix and Fit Statistics
start example
                                                Stability of Alienation                                   Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                                Covariance Structure Analysis: Maximum Likelihood Estimation                                                   Predicted Model Matrix                                             v1             v2             v3            v4             v5             v6  v1   Anomia (1967)                11.90390632     6.91059048     6.83016211     4.93499582    -4.16791157    -22.3768816  v2   Anomia (1971)                 6.91059048     9.35145064     4.93499582     5.01664889    -3.47187034    -18.6399424  v3   Education                     6.83016211     4.93499582    12.61574998     7.50355625    -4.06565606    -21.8278873  v4   Powerlessness (1967)          4.93499582     5.01664889     7.50355625     9.84539112    -3.38669150    -18.1826302  v5   Powerlessness (1971)         -4.16791157    -3.47187034    -4.06565606    -3.38669150    9.61000000     35.5219999  v6   Occupational Status Index   -22.37688158   -18.63994236   -21.82788734   -18.18263015    35.52199986    450.2879993                                       Determinant       6169285    Ln     15.635094                                                   Stability of Alienation                                   Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                                Covariance Structure Analysis: Maximum Likelihood Estimation                                Fit Function                                          0.0145                                Goodness of Fit Index (GFI)                           0.9953                                GFI Adjusted for Degrees of Freedom (AGFI)            0.9890                                Root Mean Square Residual (RMR)                       0.2281                                Parsimonious GFI (Mulaik, 1989)                       0.5972                                Chi-Square                                           13.4851                                Chi-Square DF                                              9                                Pr > Chi-Square                                       0.1419                                Independence Model Chi-Square                         2131.4                                Independence Model Chi-Square DF                          15                                RMSEA Estimate                                        0.0231                                RMSEA 90% Lower Confidence Limit                           .                                RMSEA 90% Upper Confidence Limit                      0.0470                                ECVI Estimate                                         0.0405                                ECVI 90% Lower Confidence Limit                            .                                ECVI 90% Upper Confidence Limit                       0.0556                                Probability of Close Fit                              0.9705                                Bentler's Comparative Fit Index                       0.9979                                Normal Theory Reweighted LS Chi-Square               13.2804                                Akaike's Information Criterion                       -4.5149                                Bozdogan's (1987) CAIC                              -57.0509                                Schwarz's Bayesian Criterion                        -48.0509                                McDonald's (1989) Centrality                          0.9976                                Bentler & Bonett's (1980) Non-normed Index            0.9965                                Bentler & Bonett's (1980) NFI                         0.9937                                James, Mulaik, & Brett (1982) Parsimonious NFI        0.5962                                Z-Test of Wilson & Hilferty (1931)                    1.0754                                Bollen (1986) Normed Index Rho1                       0.9895                                Bollen (1988) Non-normed Index Delta2                 0.9979                                Hoelter's (1983) Critical N                             1170 
end example
 
Output 19.1.6: Residual Analysis
start example
                                             Stability of Alienation                                Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                             Covariance Structure Analysis: Maximum Likelihood Estimation                                                 Raw Residual Matrix                                           v1           v2           v3           v4           v5           v6  v1  Anomia (1967)              -.0699063150 0.0364095216 -.0111621061 -.1519958205 0.3289115712 0.4778815840  v2  Anomia (1971)              0.0364095216 0.0125493646 0.1560041795 0.0113511059 -.4171296612 -.1910576405  v3 Education                   -.0111621061 0.1560041795 -.0837499788 -.0085562504 0.2246560598 0.0798873380  v4  Powerlessness (1967)       -.1519958205 0.0113511059 -.0085562504 0.1406088766 -.2383085022 -.5923698474  v5  Powerlessness (1971)       0.3289115712 -.4171296612 0.2246560598 -.2383085022 0.0000000000 0.0000000000  v6 Occupational Status Index   0.4778815840 -.1910576405 0.0798873380 -.5923698474 0.0000000000 0.0000000000                               Average Absolute Residual                    0.153928                               Average Off-diagonal Absolute Residual       0.195045                                                           Stability of Alienation                                Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                             Covariance Structure Analysis: Maximum Likelihood Estimation                                      Rank Order of the 10 Largest Raw Residuals                                          Row         Column        Residual                                          v6          v4            -0.59237                                          v6          v1             0.47788                                          v5          v2            -0.41713                                          v5          v1             0.32891                                          v5          v4            -0.23831                                          v5          v3             0.22466                                          v6          v2            -0.19106                                          v3          v2             0.15600                                          v4          v1            -0.15200                                          v4          v4             0.14061                                                Stability of Alienation                                Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                             Covariance Structure Analysis: Maximum Likelihood Estimation                                     Asymptotically Standardized Residual Matrix                                           v1            v2            v3           v4            v5            v6  v1  Anomia (1967)              -0.308548787   0.526654452 -0.056188826  -0.865070455   2.553366366   0.464866661  v2  Anomia (1971)               0.526654452   0.054363484  0.876120855   0.057354415  -2.763708659  -0.170127806  v3 Education                   -0.056188826   0.876120855 -0.354347092  -0.121874301   1.697931678   0.070202664  v4  Powerlessness (1967)       -0.865070455   0.057354415 -0.121874301   0.584930625  -1.557412695  -0.495982427  v5  Powerlessness (1971)        2.553366366  -2.763708659  1.697931678  -1.557412695   0.000000000   0.000000000  v6 Occupational Status Index    0.464866661  -0.170127806  0.070202664  -0.495982427   0.000000000   0.000000000                               Average Standardized Residual                  0.646622                               Average Off-diagonal Standardized Residual     0.818457                                                Stability of Alienation                                Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                             Covariance Structure Analysis: Maximum Likelihood Estimation                          Rank Order of the 10 Largest Asymptotically Standardized Residuals                                          Row         Column        Residual                                          v5          v2            -2.76371                                          v5          v1             2.55337                                          v5          v3             1.69793                                          v5          v4            -1.55741                                          v3          v2             0.87612                                          v4          v1            -0.86507                                          v4          v4             0.58493                                          v2          v1             0.52665                                          v6          v4            -0.49598                                          v6          v1             0.46487                                                Stability of Alienation                                Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                             Covariance Structure Analysis: Maximum Likelihood Estimation                                 Distribution of Asymptotically Standardized Residuals                                             Each * Represents 1 Residuals                      ----------Range---------    Freq    Percent                        -3.00000      -2.75000       1       4.76    *                        -2.75000      -2.50000       0       0.00                        -2.50000      -2.25000       0       0.00                        -2.25000      -2.00000       0       0.00                        -2.00000      -1.75000       0       0.00                        -1.75000      -1.50000       1       4.76    *                        -1.50000      -1.25000       0       0.00                        -1.25000      -1.00000       0       0.00                        -1.00000      -0.75000       1       4.76    *                        -0.75000      -0.50000       0       0.00                        -0.50000      -0.25000       3      14.29    ***                        -0.25000             0       3      14.29    ***                               0       0.25000       6      28.57    ******                         0.25000       0.50000       1       4.76    *                         0.50000       0.75000       2       9.52    **                         0.75000       1.00000       1       4.76    *                         1.00000       1.25000       0       0.00                         1.25000       1.50000       0       0.00                         1.50000       1.75000       1       4.76    *                         1.75000       2.00000       0       0.00                         2.00000       2.25000       0       0.00                         2.25000       2.50000       0       0.00                         2.50000       2.75000       1       4.76    * 
end example
 
Output 19.1.7: Equations and Parameter Estimates
start example
                      Stability of Alienation         Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)      Covariance Structure Analysis: Maximum Likelihood Estimation             v1      =   1.0000 F1       + 1.0000 E1             v2      =   0.8330 F1       + 1.0000 E2             v3      =   1.0000 F2       + 1.0000 E3             v4      =   0.8330 F2       + 1.0000 E4             v5      =   1.0000 F3       + 1.0000 E5             v6      =   5.3688*F3       + 1.0000 E6             Std Err     0.4337 Lamb             t Value    12.3788                        Stability of Alienation         Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)      Covariance Structure Analysis: Maximum Likelihood Estimation  F1       =  -0.6299*F3       +  1.0000 D1  Std Err      0.0563 Gam1  t Value    -11.1809  F2       =   0.5931*F1       + -0.2409*F3       + 1.0000 D2  Std Err      0.0468 Beta        0.0549 Gam2  t Value     12.6788            -4.3885                         Stability of Alienation         Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)      Covariance Structure Analysis: Maximum Likelihood Estimation                   Variances of Exogenous Variables                                             Standard       Variable Parameter      Estimate         Error     t Value       F3       Phi             6.61632       0.63914       10.35       E1       The1            3.60788       0.20092       17.96       E2       The2            3.59493       0.16448       21.86       E3       The1            3.60788       0.20092       17.96       E4       The2            3.59493       0.16448       21.86       E5       The3            2.99368       0.49861        6.00       E6       The4          259.57580      18.31150       14.18       D1       Psi1            5.67047       0.42301       13.41       D2       Psi2            4.51480       0.33532       13.46                 Covariances Among Exogenous Variables                                              Standard       Var1 Var2 Parameter      Estimate         Error     t Value       E1   E3   The5           0.90580        0.12167        7.44       E2   E4   The5           0.90580        0.12167        7.44 
end example
 
Output 19.1.8: Standardized Equations and Predicted Moments
start example
                  Stability of Alienation     Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)  Covariance Structure Analysis: Maximum Likelihood Estimation             v1     =    0.8348 F1   +  0.5505 E1             v2     =    0.7846 F1   +  0.6200 E2             v3     =    0.8450 F2   +  0.5348 E3             v4     =    0.7968 F2   +  0.6043 E4             v5     =    0.8297 F3   +  0.5581 E5             v6     =    0.6508*F3   +  0.7593 E6                                Lamb                    Stability of Alienation     Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)  Covariance Structure Analysis: Maximum Likelihood Estimation     F1      =  -0.5626*F3   +  0.8268 D1                        Gam1     F2      =   0.5692*F1 + -0.2064*F3 + 0.7080 D2                        Beta         Gam2                     Stability of Alienation     Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)  Covariance Structure Analysis: Maximum Likelihood Estimation                 Squared Multiple Correlations                             Error         Total            Variable      Variance      Variance    R-Square       1    v1             3.60788      11.90391      0.6969       2    v2             3.59493       9.35145      0.6156       3    v3             3.60788      12.61575      0.7140       4    v4             3.59493       9.84539      0.6349       5    v5             2.99368       9.61000      0.6885       6    v6           259.57580     450.28800      0.4235       7    F1             5.67047       8.29603      0.3165       8    F2             4.51480       9.00787      0.4988             Correlations Among Exogenous Variables               Var1 Var2 Parameter      Estimate               E1   E3   The5            0.25106               E2   E4   The5            0.25197                     Stability of Alienation     Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)  Covariance Structure Analysis: Maximum Likelihood Estimation             Predicted Moments of Latent Variables                      F1                F2                F3    F1       8.296026985       5.924364730      -4.167911571    F2       5.924364730       9.007870649      -4.065656060    F3      -4.167911571      -4.065656060       6.616317547    Predicted Moments between Manifest and Latent Variables                      F1                F2                F3    v1        8.29602698        5.92436473       -4.16791157    v2        6.91059048        4.93499582       -3.47187034    v3        5.92436473        9.00787065       -4.06565606    v4        4.93499582        7.50355625       -3.38669150    v5       -4.16791157       -4.06565606        6.61631755    v6      -22.37688158      -21.82788734       35.52199986 
end example
 
Output 19.1.9: Latent Variable Score Regression, Direct and Indirect Effects
start example
                                Stability of Alienation                   Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                Covariance Structure Analysis: Maximum Likelihood Estimation                       Latent Variable Score Regression Coefficients                                                   F1                F2                F3  v1      Anomia (1967)                  0.4131113567      0.0482681051      -.0521264408  v2      Anomia (1971)                  0.3454029627      0.0400143300      -.0435560637  v3      Education                      0.0526632293      0.4306175653      -.0399927539  v4      Powerlessness (1967)           0.0437036855      0.3600452776      -.0334000265  v5      Powerlessness (1971)           -.0749215200      -.0639697183      0.5057060770  v6      Occupational Status Index      -.0046390513      -.0039609288      0.0313127184                                       Total Effects                                    F3                F1                F2                  v1      -0.629944307       1.000000000       0.000000000                  v2      -0.524743608       0.833000000       0.000000000                  v3      -0.614489258       0.593112208       1.000000000                  v4      -0.511869552       0.494062469       0.833000000                  v5       1.000000000       0.000000000       0.000000000                  v6       5.368847492       0.000000000       0.000000000                  F1      -0.629944307       0.000000000       0.000000000                  F2      -0.614489258       0.593112208       0.000000000                                      Indirect Effects                                    F3                F1                F2                  v1      -.6299443069      0.0000000000                 0                  v2      -.5247436076      0.0000000000                 0                  v3      -.6144892580      0.5931122083                 0                  v4      -.5118695519      0.4940624695                 0                  v5      0.0000000000      0.0000000000                 0                  v6      0.0000000000      0.0000000000                 0                  F1      0.0000000000      0.0000000000                 0                  F2      -.3736276589      0.0000000000                 0  
end example
 
Output 19.1.10: Lagrange Multiplie rand Wald Tests
start example
                                                Stability of Alienation                                   Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                                Covariance Structure Analysis: Maximum Likelihood Estimation                                  Lagrange Multiplier and Wald Test Indices _PHI_   [9:9]                                                     Symmetric Matrix                                         Univariate Tests for Constant Constraints                         Lagrange Multiplier or Wald Index / Probability / Approx Change of Value               F3           E1           E2           E3           E4           E5          E6           D1           D2  F3     107.1619       3.3903       3.3901       0.5752       0.5753        .           .            .            .            .           0.0656       0.0656       0.4482       0.4482        .           .            .            .            .           0.5079      -0.4231       0.2090      -0.1741        .           .            .            .            [Phi]                                                             Sing        Sing         Sing         Sing  E1       3.3903     322.4501       0.1529      55.4237       1.2037       5.8025      0.7398       0.4840       0.0000           0.0656        .           0.6958        .           0.2726       0.0160      0.3897       0.4866       0.9961           0.5079        .           0.0900        .          -0.3262       0.5193     -1.2587       0.2276       0.0014                        [The1]                    [The5]  E2       3.3901       0.1529     477.6768       0.5946      55.4237       7.3649      1.4168       0.4840       0.0000           0.0656       0.6958        .           0.4406        .           0.0067      0.2339       0.4866       0.9961          -0.4231       0.0900        .           0.2328        .          -0.5060      1.5431      -0.1896      -0.0011                                     [The2]                    [The5]  E3       0.5752      55.4237       0.5946     322.4501       0.1528       1.5982      0.0991       1.1825       0.5942           0.4482        .           0.4406        .           0.6958       0.2062      0.7529       0.2768       0.4408           0.2090        .           0.2328        .          -0.0900       0.2709     -0.4579       0.2984      -0.2806                        [The5]                    [The1]  E4       0.5753       1.2037      55.4237       0.1528     477.6768       1.2044      0.0029       1.1825       0.5942           0.4482       0.2726        .           0.6958        .           0.2724      0.9568       0.2768       0.4408          -0.1741      -0.3262        .          -0.0900        .          -0.2037      0.0700      -0.2486       0.2338                                     [The5]                    [The2]  E5        .           5.8025       7.3649       1.5982       1.2044      36.0486       .           0.1033       0.1035            .           0.0160       0.0067       0.2062       0.2724        .           .           0.7479       0.7477            .           0.5193      -0.5060       0.2709      -0.2037        .           .          -0.2776       0.1062             Sing                                                           [The3]        Sing  E6        .           0.7398       1.4168       0.0991       0.0029        .        200.9466       0.1034       0.1035            .           0.3897       0.2339       0.7529       0.9568        .           .           0.7478       0.7477            .          -1.2587       1.5431      -0.4579       0.0700        .           .           1.4906      -0.5700             Sing                                                             Sing      [The4]  D1        .           0.4840       0.4840       1.1825       1.1825       0.1033      0.1034     179.6950        .            .           0.4866       0.4866       0.2768       0.2768       0.7479      0.7478        .            .            .           0.2276      -0.1896       0.2984      -0.2486      -0.2776      1.4906        .            .             Sing                                                                                    [Psi1]         Sing  D2        .           0.0000       0.0000       0.5942       0.5942       0.1035      0.1035        .         181.2787            .           0.9961       0.9961       0.4408       0.4408       0.7477      0.7477        .            .            .           0.0014      -0.0011      -0.2806       0.2338       0.1062     -0.5700        .            .             Sing                                                                                      Sing       [Psi2]                                                   Stability of Alienation                                   Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                                 Covariance Structure Analysis: Maximum Likelihood Estimation                                 Rank Order of the 10 Largest Lagrange Multipliers in _PHI_                                       Row         Column      Chi-Square    Pr > ChiSq                                       E5          E2             7.36486        0.0067                                       E5          E1             5.80246        0.0160                                       E1          F3             3.39030        0.0656                                       E2          F3             3.39013        0.0656                                       E5          E3             1.59820        0.2062                                       E6          E2             1.41677        0.2339                                       E5          E4             1.20437        0.2724                                       E4          E1             1.20367        0.2726                                       D1          E3             1.18251        0.2768                                       D1          E4             1.18249        0.2768                                                   Stability of Alienation                                   Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                                 Covariance Structure Analysis: Maximum Likelihood Estimation                                   Lagrange Multiplier and Wald Test Indices _GAMMA_ [8:1]                                                        General Matrix                                          Univariate Tests for Constant Constraints                           Lagrange Multiplier or Wald Index / Probability / Approx Change of Value                                                                     F3                                                      v1         3.3903                                                                 0.0656                                                                 0.0768                                                      v2         3.3901                                                                 0.0656                                                                -0.0639                                                      v3         0.5752                                                                 0.4482                                                                 0.0316                                                      v4         0.5753                                                                 0.4482                                                                -0.0263                                                      v5          .                                                                  .                                                                  .                                                                   Sing                                                      v6       153.2354                                                                  .                                                                  .                                                                 [Lamb]                                                                                F1       125.0132                                                                  .                                                                  .                                                                 [Gam1]                                                      F2        19.2585                                                                  .                                                                  .                                                                 [Gam2]                                                  Stability of Alienation                                   Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                                Covariance Structure Analysis: Maximum Likelihood Estimation                                Rank Order of the 4 Largest Lagrange Multipliers in _GAMMA_                                      Row         Column      Chi-Square    Pr > ChiSq                                      v1          F3             3.39030        0.0656                                      v2          F3             3.39013        0.0656                                      v4          F3             0.57526        0.4482                                      v3          F3             0.57523        0.4482                                                  Stability of Alienation                                   Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                                Covariance Structure Analysis: Maximum Likelihood Estimation                                   Lagrange Multiplier and Wald Test Indices _BETA_  [8:8]                                                        General Matrix                                             Identity-Minus-Inverse Model Matrix                                          Univariate Tests for Constant Constraints                           Lagrange Multiplier or Wald Index / Probability / Approx Change of Value                    v1            v2            v3            v4            v5           v6            F1            F2      v1         .            0.1647        0.0511        0.8029        5.4083       0.1233        0.4047        0.4750                 .            0.6849        0.8212        0.3702        0.0200       0.7255        0.5247        0.4907                 .           -0.0159       -0.0063       -0.0284        0.0697       0.0015       -0.0257       -0.0239                  Sing      v2        0.5957         .            0.6406        0.0135        5.8858       0.0274        0.4047        0.4750                0.4402         .            0.4235        0.9076        0.0153       0.8686        0.5247        0.4907                0.0218         .            0.0185        0.0032       -0.0609      -0.0006        0.0214        0.0199                                Sing      v3        0.3839        0.3027         .            0.1446        1.1537       0.0296        0.1588        0.0817                0.5355        0.5822         .            0.7038        0.2828       0.8634        0.6902        0.7750                0.0178        0.0180         .           -0.0145        0.0322       0.0007        0.0144       -0.0110                                              Sing      v4        0.4487        0.2519        0.0002         .            0.9867       0.1442        0.1588        0.0817                0.5030        0.6157        0.9877         .            0.3206       0.7041        0.6903        0.7750               -0.0160       -0.0144       -0.0004         .           -0.0249      -0.0014       -0.0120        0.0092                                                            Sing      v5        5.4085        8.6455        2.7123        2.1457         .             .           0.1033        0.1035                0.0200        0.0033        0.0996        0.1430         .             .           0.7479        0.7476                0.1242       -0.1454        0.0785       -0.0674         .             .          -0.0490        0.0329                                                                          Sing          Sing              v6        0.4209        1.4387        0.3044        0.0213         .             .           0.1034        0.1035                0.5165        0.2304        0.5811        0.8841         .             .           0.7478        0.7477               -0.2189        0.3924       -0.1602        0.0431         .             .           0.2629       -0.1765                                                                          Sing          Sing           F1        1.0998        1.1021        1.6114        1.6128        0.1032       0.1035         .             .                0.2943        0.2938        0.2043        0.2041        0.7480       0.7477         .             .                0.0977       -0.0817        0.0993       -0.0831       -0.0927       0.0057         .             .                                                                                                     Sing          Sing      v      F2        0.0193        0.0194        0.4765        0.4760        0.1034       0.1035      160.7520         .                0.8896        0.8892        0.4900        0.4902        0.7477       0.7477         .             .               -0.0104        0.0087       -0.0625        0.0522        0.0355      -0.0022         .             .                                                                                                   [Beta]          Sing                                                   Stability of Alienation                                   Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)                                 Covariance Structure Analysis: Maximum Likelihood Estimation                                 Rank Order of the 10 Largest Lagrange Multipliers in _BETA_                                       Row         Column      Chi-Square    Pr > ChiSq                                       v5          v2             8.64546        0.0033                                       v2          v5             5.88576        0.0153                                       v5          v1             5.40848        0.0200                                       v1          v5             5.40832        0.0200                                       v5          v3             2.71233        0.0996                                       v5          v4             2.14572        0.1430                                       F1          v4             1.61279        0.2041                                       F1          v3             1.61137        0.2043                                       v6          v2             1.43867        0.2304                                       v3          v5             1.15372        0.2828 
end example
 
Output 19.1.11: Tests for Equality Constraints
start example
                       Stability of Alienation          Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)       Covariance Structure Analysis: Maximum Likelihood Estimation  Univariate Lagrange Multiplier Test for Releasing Equality Constraints   Equality Constraint    -----Changes-----    Chi-Square    Pr > ChiSq   [E1:E1] = [E3:E3]        0.0293  -0.0308       0.02106        0.8846   [E2:E2] = [E4:E4]       -0.1342   0.1388       0.69488        0.4045   [E3:E1] = [E4:E2]        0.2468  -0.1710       1.29124        0.2558 
end example
 

Output 19.1.1 displays the model specification in matrix terms, followed by the lists of endogenous and exogenous variables. Equations and initial parameter estimates are also displayed. You can use this information to ensure that the desired model is the model being analyzed.

General modeling information and simple descriptive statistics are displayed in Output 19.1.2. Because the input data set contains only the covariance matrix, the means of the manifest variables are assumed to be zero. Note that this has no impact on the estimation, unless a mean structure model is being analyzed. The twelve parameter estimates in the model and their respective locations in the parameter matrices are also displayed. Each of the parameters, The1 , The2 , and The5 , is specified for two elements in the parameter matrix _PHI_ .

PROC CALIS examines whether each element in the moment matrix is modeled by the parameters defined in the model. If an element is not structured by the model parameters, it is predetermined by its observed value. This occurs, for example, when there are exogenous manifest variables in the model. If present, the predetermined values of the elements will be displayed. In the current example, the ˜.' displayed for all elements in the predicted moment matrix (Output 19.1.3) indicates that there are no predetermined elements in the model.

Output 19.1.4 displays the optimization information. You can check this table to determine whether the convergence criterion is satisfied. PROC CALIS displays an error message when problematic solutions are encountered .

The predicted model matrix is displayed next , followed by a list of model test statistics or fit indices (Output 19.1.5). Depending on your modeling philosophy, some indices may be preferred to others. In this example, all indices and test statistics point to a good fit of the model.

PROC CALIS can perform a detailed residual analysis. Large residuals may indicate misspecification of the model. In Output 19.1.6 for example, note the table for the 10 largest asymptotically standardized residuals. As the table shows, the specified model performs the poorest concerning the variable V5 and its covariance with V2 , V1 , and V3 . This may be the result of a misspecification of the model equation for V5 . However, because the model fit is quite good, such a possible misspecification may have no practical significance and is not a serious concern in the analysis.

Output 19.1.7 displays the equations and parameter estimates. Each parameter estimate is displayed with its standard error and the corresponding t ratio. As a general rule, a t ratio larger than 2 represents a statistically significant departure from 0. From these results, it is observed that both F1 (Alienation 1967) and F2 (Alienation 1971) are regressed negatively on F3 (Socioeconomic Status), and F1 has a positive effect on F2 . The estimates and significance tests for the variance and covariance of the exogenous variables are also displayed.

The measurement scale of variables is often arbitrary. Therefore, it can be useful to look at the standardized equations produced by PROC CALIS. Output 19.1.8 displays the standardized equations and predicted moments. From the standardized structural equations for F1 and F2 , you can conclude that SES ( F3 ) has a larger impact on earlier Alienation ( F1 )thanonlaterAlienation( F3 ).

The squared multiple correlation for each equation, the correlation among the exogenous variables, and the covariance matrices among the latent variables and between the observed and the latent variables help to describe the relationships among all variables.

Output 19.1.9 displays the latent variable score regression coefficients that produce the latent variable scores. Each latent variable is expressed as a linear combination of the observed variables. See Chapter 64, 'The SCORE Procedure,' for more information on the creation of latent variable scores. Note that the total effects and indirect effects of the exogenous variables are also displayed.

PROC CALIS can display Lagrange multiplier and Wald statistics for model modifications. Modification indices are displayed for each parameter matrix. Only the Lagrange multiplier statistics have significance levels and approximate changes of values displayed. The significance level of the Wald statistic for a given parameter is the same as that shown in the equation output. An insignificant p -value for a Wald statistic means that the corresponding parameter can be dropped from the model without significantly worsening the fit of the model.

A significant p -value for a Lagrange multiplier test indicates that the model would achieve a better fit if the corresponding parameter is free. To aid in determining significant results, PROC CALIS displays the rank order of the ten largest Lagrange multiplier statistics. For example, [E5:E2] in the _PHI_ matrix is associated with the largest Lagrange multiplier statistic; the associated p -value is 0.0067. This means that adding a parameter for the covariance between E5 and E2 will lead to a significantly better fit of the model. However, adding parameters indiscriminately can result in specification errors. An over-fitted model may not perform well with future samples. As always, the decision to add parameters should be accompanied with consideration and knowledge of the application area.

When you specify equality constraints, PROC CALIS displays Lagrange multiplier tests for releasing the constraints. In the current example, none of the three constraints achieve a p -value smaller than 0.05. This means that releasing the constraints may not lead to a significantly better fit of the model. Therefore, all constraints are retained in the model.

The model is specified using the LINEQS, STD, and COV statements. The section 'Getting Started' on page 560 also contains the COSAN and RAM specifications of this model. These model specifications would give essentially the same results.

proc calis cov data=Wheaton tech=nr edf=931;     Cosan J(9, Ide) * A(9, Gen, Imi) * P(9, Sym);     Matrix A             [ ,7] = 1. .833 5 * 0. Beta (.5) ,             [ ,8] = 2 * 0.  1.  .833 ,             [ ,9] = 4 * 0.  1.  Lamb Gam1-Gam2 (.5 2 * -.5);     Matrix P             [1,1] = The1-The2 The1-The4 (6 * 3.) ,             [7,7] = Psi1-Psi2 Phi (2 * 4. 6.) ,             [3,1] = The5 (.2) ,             [4,2] = The5 (.2) ;     Vnames J V1-V6 F1-F3 ,            A = J ,            P E1-E6 D1-D3 ;  run;  proc calis cov data=Wheaton tech=nr edf=931;     Ram        1   1 7  1.      ,        1   2 7  .833    ,        1   3 8  1.      ,        1   4 8  .833    ,        1   5 9  1.      ,        1   6 9  .5   Lamb ,        1   7 9  -.5  Gam1 ,        1   8 7  .5   Beta ,        1   8 9  -.5  Gam2 ,        2   1 1  3.   The1 ,        2   2 2  3.   The2 ,        2   3 3  3.   The1 ,        2   4 4  3.   The2 ,        2   5 5  3.   The3 ,        2   6 6  3.   The4 ,        2   1 3  .2   The5 ,        2   2 4  .2   The5 ,        2   7 7  4.   Psi1 ,        2   8 8  4.   Psi2 ,        2   9 9  6.   Phi ;     Vnames 1 F1-F3,            2 E1-E6 D1-D3;  run; 

Example 19.2. Simultaneous Equations with Intercept

The demand-and-supply food example of Kmenta (1971, pp. 565, 582) is used to illustrate the use of PROC CALIS for the estimation of intercepts and coefficients of simultaneous equations. The model is specified by two simultaneous equations containing two endogenous variables Q and P and three exogenous variables D , F , and Y ,

click to expand

for t =1, , 20.

The LINEQS statement requires that each endogenous variable appear on the left-hand side of exactly one equation. Instead of analyzing the system

PROC CALIS analyzes the equivalent system

click to expand

with B * = I ˆ’ B . This requires that one of the preceding equations be solved for P t . Solving the second equation for P t yields

click to expand

You can estimate the intercepts of a system of simultaneous equations by applying PROC CALIS on the uncorrected covariance (UCOV) matrix of the data set that is augmented by an additional constant variable with the value 1. In the following example, the uncorrected covariance matrix is augmented by an additional variable INTERCEPT by using the AUGMENT option. The PROC CALIS statement contains the options UCOV and AUG to compute and analyze an augmented UCOV matrix from the input data set FOOD.

Data food;  Title 'Food example of KMENTA(1971, p.565 & 582)';    Input Q P D F Y;    Label  Q='Food Consumption per Head'           P='Ratio of Food Prices to General Price'           D='Disposable Income in Constant Prices'           F='Ratio of Preceding Years Prices'           Y='Time in Years 1922-1941';  datalines;    98.485  100.323   87.4   98.0    1    99.187  104.264   97.6   99.1    2   102.163  103.435   96.7   99.1    3   101.504  104.506   98.2   98.1    4   104.240   98.001   99.8  110.8    5   103.243   99.456  100.5  108.2    6   103.993  101.066  103.2  105.6    7    99.900  104.763  107.8  109.8    8   100.350   96.446   96.6  108.7    9   102.820   91.228   88.9  100.6   10    95.435   93.085   75.1   81.0   11    92.424   98.801   76.9   68.6   12    94.535  102.908   84.6   70.9   13    98.757   98.756   90.6   81.4   14   105.797   95.119  103.1  102.3   15   100.225   98.451  105.1  105.0   16   103.522   86.498   96.4  110.5   17    99.929  104.016  104.4   92.5   18   105.223  105.769  110.7   89.3   19   106.232  113.490  127.1   93.0   20  ;  proc calis ucov aug data=food pshort;     Title2 'Compute ML Estimates With Intercept';     Lineqs        Q = alf1 Intercept + alf2 P + alf3 D + E1,        P = gam1 Intercept + gam2 Q + gam3 F + gam4 Y + E2;     Std        E1-E2 = eps1-eps2;     Cov        E1-E2 = eps3;     Bounds        eps1-eps2 >= 0. ;  run;  

The following, essentially equivalent model definition uses program code to reparameterize the model in terms of the original equations; the output is displayed in Output 19.2.1.

proc calis data=food ucov aug pshort;     Lineqs        Q = alphal Intercept + beta1 P + gamma1 D + E1,        P = alpha2_b Intercept + gamma2_b F + gamma3_b Y + _b Q + E2;     Std        E1-E2 = eps1-eps2;     Cov        E1-E2 = eps3;     Parameters alpha2 (50.) beta2 gamma2 gamma3 (3*.25);        alpha2_b = -alpha2 / beta2;        gamma2_b = -gamma2 / beta2;        gamma3_b = -gamma3 / beta2;        _b       = 1 / beta2;     Bounds        eps1-eps2 >= 0. ;  run; 
Output 19.2.1: Food Example of Kmenta
start example
                                 Food example of KMENTA(1971, p.565 & 582)                                              The CALIS Procedure                           Covariance Structure Analysis: Pattern and Initial Values                                             LINEQS Model Statement                                        Matrix      Rows    Columns    ------Matrix Type-------                Term 1            1    _SEL_          6          8    SELECTION                                   2    _BETA_         8          8    EQSBETA        IMINUSINV                                   3    _GAMMA_        8          6    EQSGAMMA                                   4    _PHI_          6          6    SYMMETRIC                                           The 2 Endogenous Variables                     Manifest        Q          P                     Latent                                           The 6 Exogenous Variables                     Manifest        D          F          Y          Intercept                     Latent                     Error           E1         E2                            Covariance Structure Analysis: Maximum Likelihood Estimation                                     Parameter Estimates                   10                                     Functions (Observations)              21                                     Lower Bounds                           2                                     Upper Bounds                           0                                                Optimization Start   Active Constraints                                  0  Objective Function                       2.350006504   Max Abs Gradient Element                 203.97414363  Radius                                   62167.829154                                                                                                          Ratio                                                                                                        Between                                                                                                         Actual                                                                   Objective    Max Abs                     and                       Function         Active        Objective     Function   Gradient               Predicted   Iter    Restarts       Calls    Constraints         Function       Change    Element     Lambda       Change     1            0           2              0          1.19094       1.1591     3.9410          0        0.688     2            0           5              0          0.32678       0.8642     9.9864    0.00127        2.356     3            0           7              0          0.19108       0.1357     5.5100    0.00006        0.685     4            0          10              0          0.16682       0.0243     2.0513    0.00005        0.867     5            0          12              0          0.16288      0.00393     1.0570    0.00014        0.828     6            0          13              0          0.16132      0.00156     0.3643    0.00004        0.864     7            0          15              0          0.16077     0.000557     0.2176    0.00006        0.984     8            0          16              0          0.16052     0.000250     0.1819    0.00001        0.618     9            0          17              0          0.16032     0.000201     0.0663          0        0.971    10            0          18              0          0.16030     0.000011     0.0195          0        1.108    11            0          19              0          0.16030     6.118E-7    0.00763          0        1.389    12            0          20              0          0.16030     9.454E-8    0.00301          0        1.389    13            0          21              0          0.16030     1.462E-8    0.00118          0        1.389    14            0          22              0          0.16030     2.246E-9   0.000466          0        1.380    15            0          23              0          0.16030     3.61E-10   0.000183          0        1.436                                               Optimization Results   Iterations                                         15 Function Calls                                     24   Jacobian Calls                                     16 Active Constraints                                  0   Objective Function                       0.1603035477 Max Abs Gradient Element                 0.0001826654   Lambda                                              0 Actual Over Pred Change                    1.43562251   Radius                                   0.0010320614        GCONV convergence criterion satisfied.                            Covariance Structure Analysis: Maximum Likelihood Estimation                           Fit Function                                          0.1603                           Goodness of Fit Index (GFI)                           0.9530                           GFI Adjusted for Degrees of Freedom (AGFI)            0.0120                           Root Mean Square Residual (RMR)                       2.0653                           Parsimonious GFI (Mulaik, 1989)                       0.0635                           Chi-Square                                            3.0458                           Chi-Square DF                                              1                           Pr > Chi-Square                                       0.0809                           Independence Model Chi-Square                         534.27                           Independence Model Chi-Square DF                          15                           RMSEA Estimate                                        0.3281                           RMSEA 90% Lower Confidence Limit                           .                           RMSEA 90% Upper Confidence Limit                      0.7777                           ECVI Estimate                                         1.8270                           ECVI 90% Lower Confidence Limit                            .                           ECVI 90% Upper Confidence Limit                       3.3493                           Probability of Close Fit                              0.0882                           Bentler's Comparative Fit Index                       0.9961                           Normal Theory Reweighted LS Chi-Square                2.8142                           Akaike's Information Criterion                        1.0458                           Bozdogan's (1987) CAIC                               -0.9500                           Schwarz's Bayesian Criterion                          0.0500                           McDonald's (1989) Centrality                          0.9501                           Bentler & Bonett's (1980) Non-normed Index            0.9409                           Bentler & Bonett's (1980) NFI                         0.9943                           James, Mulaik, & Brett (1982) Parsimonious NFI        0.0663                           Z-Test of Wilson & Hilferty (1931)                    1.4250                           Bollen (1986) Normed Index Rho1                       0.9145                           Bollen (1988) Non-normed Index Delta2                 0.9962                           Hoelter's (1983) Critical N                               25                            Covariance Structure Analysis: Maximum Likelihood Estimation  Q         =  -0.2295*P         +  0.3100*D          + 93.6193*Intercept + 1.0000 E1                       beta1               gamma1              alphal  P         =   4.2140*Q         + -0.9305*F         + -1.5579*Y         + -218.9*Intercept + 1.0000 E2                       _b                  gamma2_b            gamma3_b           alpha2_b                            Covariance Structure Analysis: Maximum Likelihood Estimation                                        Variances of Exogenous Variables                                        Variable  Parameter       Estimate                                        D                           10154                                        F                            9989                                        Y                       151.05263                                        Intercept                 1.05263                                        E1        eps1            3.51274                                        E2        eps2          105.06746                                      Covariances Among Exogenous Variables                                   Var1      Var2      Parameter      Estimate                                   D         F                            9994                                   D         Y                            1101                                   F         Y                            1046                                   D         Intercept               102.66842                                   F         Intercept               101.71053                                   Y         Intercept                11.05263                                   E1        E2        eps3          -18.87270                            Covariance Structure Analysis: Maximum Likelihood Estimation  Q         =  -0.2278*P         +  0.3016*D         +  0.9272*Intercept + 0.0181 E1                       beta1               gamma1              alphal  P         =   4.2467*Q         + -0.9048*F         + -0.1863*Y         + -2.1849*Intercept + 0.0997 E2                       _b                  gamma2_b            gamma3_b            alpha2_b                                           Squared Multiple Correlations                                                       Error         Total                                     Variable       Variance      Variance    R-Square                                1    Q               3.51274         10730      0.9997                                2    P             105.06746         10565      0.9901                                     Correlations Among Exogenous Variables                                   Var1      Var2      Parameter      Estimate                                   D         F                         0.99237                                   D         Y                         0.88903                                   F         Y                         0.85184                                   D         Intercept                 0.99308                                   F         Intercept                 0.99188                                   Y         Intercept                 0.87652                                   E1        E2        eps3           -0.98237                                    Additional PARMS and Dependent Parameters                                     The Number of Dependent Parameters is 4                                                              Standard                                 Parameter      Estimate         Error    t Value                                 alpha2         51.94453             .        .                                 beta2           0.23731             .        .                                 gamma2          0.22082             .        .                                 gamma3          0.36971             .        .                                 _b              4.21397             .        .                                 gamma2_b       -0.93053             .        .                                 gamma3_b       -1.55794             .        .                                 alpha2_b     -218.89288             .        .  
end example
 

You can obtain almost equivalent results by applying the SAS/ETS procedure SYSLIN on this problem.

Example 19.3. Second-Order Confirmatory Factor Analysis

A second-order confirmatory factor analysis model is applied to a correlation matrix of Thurstone reported by McDonald (1985). Using the LINEQS statement, the three-term second-order factor analysis model is specified in equations notation. The first-order loadings for the three factors, F1 , F2 ,and F3 , each refer to three variables, X1-X3, X4-X6 ,and X7-X9 . One second-order factor, F4 , reflects the correlations among the three first-order factors. The second-order factor correlation matrix P is defined as a 1 —1 identity matrix. Choosing the second-order uniqueness matrix U2 as a diagonal matrix with parameters U21-U23 gives an unidentified model. To compute identified maximum likelihood estimates, the matrix U2 is defined as a 3 —3 identity matrix. The following code generates results that are partially displayed in Output 19.3.1.

Data Thurst(TYPE=CORR);  Title "Example of THURSTONE resp. McDONALD (1985, p.57, p.105)";     _TYPE_ = 'CORR'; Input _NAME_ $ Obs1-Obs9;     Label Obs1='Sentences' Obs2='Vocabulary' Obs3='Sentence Completion'           Obs4='First Letters' Obs5='Four-letter Words' Obs6='Suffices'           Obs7='Letter series' Obs8='Pedigrees' Obs9='Letter Grouping';     Datalines;  Obs1  1.      .       .      .      .      .      .      .      .  Obs2   .828  1.       .      .      .      .      .      .      .  Obs3   .776   .779   1.      .      .      .      .      .      .  Obs4   .439   .493    .460  1.      .      .      .      .      .  Obs5   .432   .464    .425   .674  1.      .      .      .      .  Obs6   .447   .489    .443   .590   .541  1.      .      .      .  Obs7   .447   .432    .401   .381   .402   .288  1.      .      .  Obs8   .541   .537    .534   .350   .367   .320   .555  1.      .  Obs9   .380   .358    .359   .424   .446   .325   .598   .452  1.  ;  proc calis data=Thurst method=max edf=212 pestim se;  Title2 "Identified Second Order Confirmatory Factor Analysis";  Title3 "C = F1 * F2 * P * F2' * F1' + F1 * U2 * F1' + U1, With P=U2=Ide";  Lineqs     Obs1 = X1 F1 + E1,     Obs2 = X2 F1 + E2,     Obs3 = X3 F1 + E3,     Obs4 = X4 F2 + E4,     Obs5 = X5 F2 + E5,     Obs6 = X6 F2 + E6,     Obs7 = X7 F3 + E7,     Obs8 = X8 F3 + E8,     Obs9 = X9 F3 + E9,     F1   = X10 F4 + E10,     F2   = X11 F4 + E11,     F3   = X12 F4 + E12;  Std     F4      = 1. ,     E1-E9   = U11-U19 ,     E10-E12 = 3 * 1.;  Bounds     0. <= U11-U19;  run; 
Output 19.3.1: Second-Order Confirmatory Factor Analysis
start example
                           Example of THURSTONE resp. McDONALD (1985, p.57, p.105)                               Identified Second Order Confirmatory Factor Analysis                         C = F1 * F2 * P * F2' * F1' + F1 * U2 * F1' + U1, With P=U2=Ide                                               The CALIS Procedure                           Covariance Structure Analysis: Maximum Likelihood Estimation                                     Parameter Estimates                   21                                     Functions (Observations)              45                                     Lower Bounds                           9                                     Upper Bounds                           0                                                Optimization Start   Active Constraints                                  0  Objective Function                      0.7151823452   Max Abs Gradient Element                 0.4067179803 Radius                                   2.2578762496                                                                                                          Ratio                                                                                                        Between                                                                                                         Actual                                                                   Objective    Max Abs                     and                       Function         Active        Objective     Function   Gradient               Predicted   Iter    Restarts       Calls    Constraints         Function       Change    Element     Lambda       Change     1            0           2              0          0.23113       0.4840     0.1299          0        1.363     2            0           3              0          0.18322       0.0479     0.0721          0        1.078     3            0           4              0          0.18051      0.00271     0.0200          0        1.006     4            0           5              0          0.18022     0.000289    0.00834          0        1.093     5            0           6              0          0.18018     0.000041    0.00251          0        1.201     6            0           7              0          0.18017     6.523E-6    0.00114          0        1.289     7            0           8              0          0.18017     1.085E-6   0.000388          0        1.347     8            0           9              0          0.18017     1.853E-7   0.000173          0        1.380     9            0          10              0          0.18017     3.208E-8   0.000063          0        1.399    10            0          11              0          0.18017     5.593E-9   0.000028          0        1.408    11            0          12              0          0.18017     9.79E-10   0.000011          0        1.414                                               Optimization Results   Iterations                                         11 Function Calls                                     13   Jacobian Calls                                     12  Active Constraints                                 0   Objective Function                       0.1801712147  Max Abs Gradient Element                0.0000105805   Lambda                                              0 Actual Over Pred Change                  1.4135921728   Radius                                   0.0002026368        GCONV convergence criterion satisfied.                               Identified Second Order Confirmatory Factor Analysis                         C = F1 * F2 * P * F2' * F1' + F1 * U2 * F1' + U1, With P=U2=Ide                           Covariance Structure Analysis: Maximum Likelihood Estimation                           Fit Function                                          0.1802                           Goodness of Fit Index (GFI)                           0.9596                           GFI Adjusted for Degrees of Freedom (AGFI)            0.9242                           Root Mean Square Residual (RMR)                       0.0436                           Parsimonious GFI (Mulaik, 1989)                       0.6397                           Chi-Square                                           38.1963                           Chi-Square DF                                             24                           Pr > Chi-Square                                       0.0331                           Independence Model Chi-Square                         1101.9                           Independence Model Chi-Square DF                          36                           RMSEA Estimate                                        0.0528                           RMSEA 90% Lower Confidence Limit                      0.0153                           RMSEA 90% Upper Confidence Limit                      0.0831                           ECVI Estimate                                         0.3881                           ECVI 90% Lower Confidence Limit                            .                           ECVI 90% Upper Confidence Limit                       0.4888                           Probability of Close Fit                              0.4088                           Bentler's Comparative Fit Index                       0.9867                           Normal Theory Reweighted LS Chi-Square               40.1947                           Akaike's Information Criterion                       -9.8037                           Bozdogan's (1987) CAIC                             -114.4747                           Schwarz's Bayesian Criterion                        -90.4747                           McDonald's (1989) Centrality                          0.9672                           Bentler & Bonett's (1980) Non-normed Index            0.9800                           Bentler & Bonett's (1980) NFI                         0.9653                           James, Mulaik, & Brett (1982) Parsimonious NFI        0.6436                           Z-Test of Wilson & Hilferty (1931)                    1.8373                           Bollen (1986) Normed Index Rho1                       0.9480                           Bollen (1988) Non-normed Index Delta2                 0.9868                           Hoelter's (1983) Critical N                              204                               Identified Second Order Confirmatory Factor Analysis                         C = F1 * F2 * P * F2' * F1' + F1 * U2 * F1' + U1, With P=U2=Ide                           Covariance Structure Analysis: Maximum Likelihood Estimation                                  Obs1    =   0.5151*F1       +  1.0000 E1                                  Std Err     0.0629 X1                                  t Value     8.1868                                  Obs2    =   0.5203*F1       +  1.0000 E2                                  Std Err     0.0634 X2                                  t Value     8.2090                                  Obs3    =   0.4874*F1       +  1.0000 E3                                  Std Err     0.0608 X3                                  t Value     8.0151                                  Obs4    =   0.5211*F2       +  1.0000 E4                                  Std Err     0.0611 X4                                  t Value     8.5342                                  Obs5    =   0.4971*F2       +  1.0000 E5                                  Std Err     0.0590 X5                                  t Value     8.4213                                  Obs6    =   0.4381*F2       +  1.0000 E6                                  Std Err     0.0560 X6                                  t Value     7.8283                                  Obs7    =   0.4524*F3       +  1.0000 E7                                  Std Err     0.0660 X7                                  t Value     6.8584                                  Obs8    =   0.4173*F3       +  1.0000 E8                                  Std Err     0.0622 X8                                  t Value     6.7135                                  Obs9    =   0.4076*F3       +  1.0000 E9                                  Std Err     0.0613 X9                                  t Value     6.6484                               Identified Second Order Confirmatory Factor Analysis                         C = F1 * F2 * P * F2' * F1' + F1 * U2 * F1' + U1, With P=U2=Ide                           Covariance Structure Analysis: Maximum Likelihood Estimation                                  F1      =   1.4438*F4       +  1.0000 E10                                  Std Err     0.2565 X10                                  t Value     5.6282                                  F2      =   1.2538*F4       +  1.0000 E11                                  Std Err     0.2114 X11                                  t Value     5.9320                                  F3      =   1.4065*F4       +  1.0000 E12                                  Std Err     0.2689 X12                                  t Value     5.2307                               Identified Second Order Confirmatory Factor Analysis                         C = F1 * F2 * P * F2' * F1' + F1 * U2 * F1' + U1, With P=U2=Ide                           Covariance Structure Analysis: Maximum Likelihood Estimation                                        Variances of Exogenous Variables                                                                  Standard                            Variable Parameter      Estimate         Error    t Value                            F4                       1.00000                            E1       U11             0.18150       0.02848       6.37                            E2       U12             0.16493       0.02777       5.94                            E3       U13             0.26713       0.03336       8.01                            E4       U14             0.30150       0.05102       5.91                            E5       U15             0.36450       0.05264       6.93                            E6       U16             0.50642       0.05963       8.49                            E7       U17             0.39032       0.05934       6.58                            E8       U18             0.48138       0.06225       7.73                            E9       U19             0.50509       0.06333       7.98                            E10                      1.00000                            E11                      1.00000                            E12                      1.00000                               Identified Second Order Confirmatory Factor Analysis                         C = F1 * F2 * P * F2' * F1' + F1 * U2 * F1' + U1, With P=U2=Ide                           Covariance Structure Analysis: Maximum Likelihood Estimation                                      Obs1    =   0.9047*F1   +  0.4260 E1                                                         X1                                      Obs2    =   0.9138*F1   +  0.4061 E2                                                         X2                                      Obs3    =   0.8561*F1   +  0.5168 E3                                                         X3                                      Obs4    =   0.8358*F2   +  0.5491 E4                                                         X4                                      Obs5    =   0.7972*F2   +  0.6037 E5                                                         X5                                      Obs6    =   0.7026*F2   +  0.7116 E6                                                         X6                                      Obs7    =   0.7808*F3   +  0.6248 E7                                                         X7                                      Obs8    =   0.7202*F3   +  0.6938 E8                                                         X8                                      Obs9    =   0.7035*F3   +  0.7107 E9                                                         X9                               Identified Second Order Confirmatory Factor Analysis                         C = F1 * F2 * P * F2' * F1' + F1 * U2 * F1' + U1, With P=U2=Ide                           Covariance Structure Analysis: Maximum Likelihood Estimation                                      F1      =   0.8221*F4   +  0.5694 E10                                                         X10                                      F2      =   0.7818*F4   +  0.6235 E11                                                         X11                                      F3      =   0.8150*F4   +  0.5794 E12                                                         X12                               Identified Second Order Confirmatory Factor Analysis                         C = F1 * F2 * P * F2' * F1' + F1 * U2 * F1' + U1, With P=U2=Ide                           Covariance Structure Analysis: Maximum Likelihood Estimation                                            Squared Multiple Correlations                                                      Error         Total                                     Variable      Variance      Variance    R-Square                                        1    Obs1           0.18150       1.00000      0.8185                                2    Obs2           0.16493       1.00000      0.8351                                3    Obs3           0.26713       1.00000      0.7329                                4    Obs4           0.30150       1.00000      0.6985                                5    Obs5           0.36450       1.00000      0.6355                                6    Obs6           0.50642       1.00000      0.4936                                7    Obs7           0.39032       1.00000      0.6097                                8    Obs8           0.48138       1.00000      0.5186                                9    Obs9           0.50509       1.00000      0.4949                               10    F1             1.00000       3.08452      0.6758                               11    F2             1.00000       2.57213      0.6112                               12    F3             1.00000       2.97832      0.6642 
end example
 

To compute McDonald's unidentified model, you would have to change the STD and BOUNDS statements to include three more parameters:

Std     F4      = 1. ,     E1-E9   = U11-U19 ,     E10-E12 = U21-U23 ;  Bounds     0. <= U11-U19,     0. <= U21-U23; 

The unidentified model is indicated in the output by an analysis of the linear dependencies in the approximate Hessian matrix (not shown). Because the information matrix is singular, standard errors are computed based on a Moore-Penrose inverse. The results computed by PROC CALIS differ from those reported by McDonald (1985). In the case of an unidentified model, the parameter estimates are not unique.

To specify the identified model using the COSAN model statement, you can use the following statements:

Title2 "Identified Second Order Confirmatory Factor Analysis Using COSAN";  Title3 "C = F1*F2*P*F2'*F1' + F1*U2*F1' + U1, With P=U2=Ide";  proc calis data=Thurst method=max edf=212 pestim se;     Cosan F1(3) * F2(1) * P(1,Ide) + F1(3) * U2(3,Ide) + U1(9,Dia);     Matrix F1            [ ,1] = X1-X3,            [ ,2] = 3 * 0. X4-X6,            [ ,3] = 6 * 0. X7-X9;     Matrix F2            [ ,1] = X10-X12;     Matrix U1            [1,1] = U11-U19;     Bounds            0. <= U11-U19;  run; 

Because PROC CALIS cannot compute initial estimates for a model specified by the general COSAN statement, this analysis may require more iterations than one using the LINEQS statement, depending on the precision of the processor.

Example 19.4. Linear Relations Among Factor Loadings

The correlation matrix from Kinzer and Kinzer (N=326) is used by Guttman (1957) as an example that yields an approximate simplex. McDonald (1980) uses this data set as an example of factor analysis where he supposes that the loadings of the second factor are a linear function of the loadings on the first factor, for example

click to expand

This example is also discussed in Browne (1982). The matrix specification of the model is

with

click to expand

This example is recomputed by PROC CALIS to illustrate a simple application of the COSAN model statement combined with program statements. This example also serves to illustrate the identification problem.

Data Kinzer(TYPE=CORR);  Title "Data Matrix of Kinzer & Kinzer, see GUTTMAN (1957)";     _TYPE_ = 'CORR'; INPUT _NAME_ $ Obs1-Obs6;     Datalines;  Obs1 1.00  .    .     .     .     .  Obs2  .51 1.00  .     .     .     .  Obs3  .46  .51 1.00   .     .     .  Obs4  .46  .47  .54  1.00   .     .  Obs5  .40  .39  .49   .57  1.00   .  Obs6  .33  .39  .47   .45   .56  1.00    ; 

In a first test run of PROC CALIS, the same model is used as reported in McDonald (1980). Using the Levenberg-Marquardt optimization algorithm, this example specifies maximum likelihood estimation in the following code:

proc calis data=Kinzer method=max outram=ram nobs=326 noprint;     Title2 "Linearly Related Factor Analysis, (Mcdonald,1980)";     Title3 "Identification Problem";     Cosan F(8,Gen) * I(8,Ide);     Matrix F            [ ,1]= X1-X6,            [ ,2]= X7-X12,            [1,3]= X13-X18;     Parms Alfa = .5 Beta = -.5;        X7  = Alfa + Beta * X1;        X8  = Alfa + Beta * X2;        X9  = Alfa + Beta * X3;        X10 = Alfa + Beta * X4;        X11 = Alfa + Beta * X5;        X12 = Alfa + Beta * X6;     Bounds X13-X18 >= 0.;     Vnames F Fact1 Fact2 Uvar1-Uvar6;  run; 

The pattern of the initial values is displayed in vector and in matrix form. You should always read this output very carefully , particularly when you use your own programming statements to constrain the matrix elements. The vector form shows the mapping of the model parameters to indices of the vector X that is optimized. The matrix form indicates parameter elements that are constrained by program statements by indices of X in angle brackets ( < > ). An asterisk trailing the iteration number in the displayed optimization history of the Levenberg-Marquardt algorithm indicates that the optimization process encountered a singular Hessian matrix. When this happens, especially in the last iterations, the model may not be properly identified. The computed 2 value of 10.337 for 7 degrees of freedom and the computed unique loadings agree with those reported by McDonald (1980), but the maximum likelihood estimates for the common factor loadings differ to some degree. The common factor loadings can be subjected to transformations that do not increase the value of the optimization criterion because the problem is not identified. An estimation problem that is not fully identified can lead to different solutions caused only by different initial values, different optimization techniques, or computers with different machine precision or floating-point arithmetic.

To overcome the identification problem in the first model, restart PROC CALIS with a simple modification to the model in which the former parameter X1 is fixedto0. This leads to 8 instead of 7 degrees of freedom. The following code produces results that are partially displayed in Output 19.4.1.

Data ram2(TYPE=RAM);    set ram;    if _type_ = 'ESTIM' then    if _name_ = 'X1' then do;       _name_ = ' '; _estim_ = 0.;    end;  run;  proc calis data=Kinzer method=max inram=ram2 nobs=326;     Title2 "Linearly Related Factor Analysis, (Mcdonald,1980)";     Title3 "Identified Model";     Parms Alfa = .5 Beta = -.5;        X7  = Alfa;        X8  = Alfa + Beta * X2;        X9  = Alfa + Beta * X3;        X10 = Alfa + Beta * X4;        X11 = Alfa + Beta * X5;        X12 = Alfa + Beta * X6;     Bounds X13-X18 >= 0.;  run; 
Output 19.4.1: Linearly Related Factor Analysis: Identification Problem
start example
                             Linearly Related Factor Analysis, (Mcdonald,1980)                                                Identified Model                                              The CALIS Procedure                           Covariance Structure Analysis: Pattern and Initial Values                                             COSAN Model Statement                                         Matrix    Rows    Columns    ------Matrix Type------                 Term 1            1    F            6          8    GENERAL                                    2    I            8          8    IDENTITY                               Linearly Related Factor Analysis, (Mcdonald,1980)                                                Identified Model                                              The CALIS Procedure                          Covariance Structure Analysis: Maximum Likelihood Estimation                                    Parameter Estimates                   13                                    Functions (Observations)              21                                    Lower Bounds                           6                                    Upper Bounds                           0                                               Optimization Start  Active Constraints                                  0  Objective Function                      0.3233206993  Max Abs Gradient Element                 2.2941016639 Radius                                   5.9649770297                                Linearly Related Factor Analysis, (Mcdonald,1980)                                                 Identified Model                           Covariance Structure Analysis: Maximum Likelihood Estimation                                                                                                          Ratio                                                                                                        Between                                                                                                         Actual                                                                   Objective    Max Abs                     and                       Function         Active        Objective     Function   Gradient               Predicted   Iter    Restarts       Calls    Constraints         Function       Change    Element     Lambda       Change     1            0           2              0          0.07869       0.2446     0.3945          0        0.556     2            0           3              0          0.03326       0.0454     0.0652          0        1.197     3            0           4              0          0.03185      0.00142    0.00473          0        1.047     4            0           5              0          0.03181     0.000033    0.00239          0        0.761     5            0           6              0          0.03181     4.182E-6   0.000790          0        0.551     6            0           7              0          0.03181     1.007E-6   0.000506          0        0.514     7            0           8              0          0.03181     2.661E-7   0.000213          0        0.504     8            0           9              0          0.03181     7.129E-8   0.000134          0        0.497     9            0          10              0          0.03181     1.921E-8   0.000057          0        0.492    10            0          11              0          0.03181     5.197E-9   0.000036          0        0.488    11            0          12              0          0.03181      1.41E-9   0.000015          0        0.485    12            0          13              0          0.03181     3.83E-10   9.489E-6          0        0.483                                               Optimization Results   Iterations                                         12 Function Calls                                     14   Jacobian Calls                                     13  Active Constraints                                 0   Objective Function                       0.0318073951 Max Abs Gradient Element                 9.4889247E-6   Lambda                                              0 Actual Over Pred Change                    0.48329327   Radius                                   0.0002173982        ABSGCONV convergence criterion satisfied.                                Linearly Related Factor Analysis, (Mcdonald,1980)                                                 Identified Model                           Covariance Structure Analysis: Maximum Likelihood Estimation                           Fit Function                                          0.0318                           Goodness of Fit Index (GFI)                           0.9897                           GFI Adjusted for Degrees of Freedom (AGFI)            0.9730                           Root Mean Square Residual (RMR)                       0.0409                           Parsimonious GFI (Mulaik, 1989)                       0.5278                           Chi-Square                                           10.3374                           Chi-Square DF                                              8                           Pr > Chi-Square                                       0.2421                           Independence Model Chi-Square                         682.87                           Independence Model Chi-Square DF                          15                           RMSEA Estimate                                        0.0300                           RMSEA 90% Lower Confidence Limit                           .                           RMSEA 90% Upper Confidence Limit                      0.0756                           ECVI Estimate                                         0.1136                           ECVI 90% Lower Confidence Limit                            .                           ECVI 90% Upper Confidence Limit                       0.1525                           Probability of Close Fit                              0.7137                           Bentler's Comparative Fit Index                       0.9965                           Normal Theory Reweighted LS Chi-Square               10.1441                           Akaike's Information Criterion                       -5.6626                           Bozdogan's (1987) CAIC                              -43.9578                           Schwarz's Bayesian Criterion                        -35.9578                           McDonald's (1989) Centrality                          0.9964                           Bentler & Bonett's (1980) Non-normed Index            0.9934                           Bentler & Bonett's (1980) NFI                         0.9849                           James, Mulaik, & Brett (1982) Parsimonious NFI        0.5253                           Z-Test of Wilson & Hilferty (1931)                    0.7019                           Bollen (1986) Normed Index Rho1                       0.9716                           Bollen (1988) Non-normed Index Delta2                 0.9965                           Hoelter's (1983) Critical N                              489                                Linearly Related Factor Analysis, (Mcdonald,1980)                                                 Identified Model                           Covariance Structure Analysis: Maximum Likelihood Estimation                                        Estimated Parameter Matrix F[6:8]                                           Standard Errors and t Values                                                  General Matrix               Fact1         Fact2      Uvar1         Uvar2         Uvar3         Uvar4        Uvar5         Uvar6  Obs1             0        0.7151     0.7283             0             0            0             0             0                   0        0.0405     0.0408             0             0            0             0             0                   0       17.6382    17.8276             0             0            0             0             0                              <X7>      [X13]  Obs2       -0.0543        0.7294          0        0.6707             0            0             0             0              0.1042        0.0438          0        0.0472             0            0             0             0             -0.5215       16.6655          0       14.2059             0            0             0             0                [X2]          <X8>                    [X14]    Obs3        0.1710        0.6703          0             0        0.6983            0             0             0              0.0845        0.0396          0             0        0.0324            0             0             0              2.0249       16.9077          0             0       21.5473            0             0             0                [X3]          <X9>                                  [X15]  Obs4        0.2922        0.6385          0             0             0        0.6876            0             0              0.0829        0.0462          0             0             0        0.0319            0             0              3.5224       13.8352          0             0             0       21.5791            0             0                [X4]         <X10>                                                [X16]  Obs5        0.5987        0.5582          0             0             0            0        0.5579             0              0.1003        0.0730          0             0             0            0        0.0798             0              5.9665        7.6504          0             0             0            0        6.9937             0                [X5]         <X11>                                                             [X17]  Obs6        0.4278        0.6029          0             0             0            0             0        0.7336              0.0913        0.0586          0             0             0            0             0        0.0400              4.6844       10.2929          0             0             0            0             0       18.3580                [X6]         <X12>                                                                            [X18]                                Linearly Related Factor Analysis, (Mcdonald,1980)                                                 Identified Model                           Covariance Structure Analysis: Maximum Likelihood Estimation                                              Additional PARMS and Dependent Parameters                                               The Number of Dependent Parameters is 6                                                                        Standard                                           Parameter      Estimate         Error    t Value                                           Alfa            0.71511       0.04054      17.64                                           Beta           -0.26217       0.12966      -2.02                                           X7              0.71511       0.04054      17.64                                           X8              0.72936       0.04376      16.67                                           X9              0.67027       0.03964      16.91                                           X10             0.63851       0.04615      13.84                                           X11             0.55815       0.07296       7.65                                           X12             0.60295       0.05858      10.29  
end example
 

The lambda value of the iteration history indicates that Newton steps can always be performed. Because no singular Hessian matrices (which can slow down the convergence rate considerably) are computed, this example needs just 12 iterations compared to the 17 needed in the previous example. Note that the number of iterations may be machine-dependent . The value of the fit function, the residuals, and the 2 value agree with the values obtained in fitting the first model. This indicates that this second model is better identified than the first one. It is fully identified, as indicated by the fact that the Hessian matrix is nonsingular.

Example 19.5. Ordinal Relations Among Factor Loadings

McDonald (1980) uses the same data set to compute a factor analysis with ordinally constrained factor loadings. The results of the linearly constrained factor analysis show that the loadings of the two factors are ordered as 2, 1, 3, 4, 6, 5. McDonald (1980) then tests the hypothesis that the factor loadings are all nonnegative and can be ordered in the following manner:

click to expand

This example is recomputed by PROC CALIS to illustrate a further application of the COSAN model statement combined with program statements. The same identification problem as in Example 19.4 on page 725 occurs here. The following model specification describes an unidentified model:

proc calis data=Kinzer method=max outram=ram tech=nr nobs=326 noprint;  Title2 "Ordinally Related Factor Analysis, (Mcdonald,1980)";  Title3 "Identification Problem";  Cosan F(8,Gen) * I(8,Ide);     MATRIX F        [,1] = x1-x6,        [,2] = x7-x12,        [1,3] = x13-x18;     PARAMETERS t1-t10=1.;     x2 = x1 + t1 * t1;     x3 = x2 + t2 * t2;     x4 = x3 + t3 * t3;     x5 = x4 + t4 * t4;     x6 = x5 + t5 * t5;     x11 = x12 + t6 * t6;     x10 = x11 + t7 * t7;     x9 = x10 + t8 * t8;     x8 = x9 + t9 * t9;     x7 = x8 + t10 * t10;     Bounds x13-x18 >= 0.;     Vnames F Fact1 Fact2 Uvar1-Uvar6;  run; 

You can specify the same model with the LINCON statement:

proc calis data=Kinzer method=max tech=lm edf=325;  Title3 "Identified Problem 2";     cosan f(8,gen)*I(8,ide);     matrix F        [,1]  = x1-x6,        [,2]  = x7-x12,        [1,3] = x13-x18;     lincon  x1  <= x2,             x2  <= x3,             x3  <= x4,             x4  <= x5,             x5  <= x6,             x7  >= x8,             x8  >= x9,             x9  >= x10,             x10 >= x11,             x11 >= x12;  Bounds x13-x18 >= 0.;  Vnames F Fact1 Fact2 Uvar1-Uvar6;  run; 

To have an identified model, the loading, b 11 ( x1 ), is fixed at 0. The information in the OUTRAM= data set (the data set ram ), produced by the unidentified model, can be used to specify the identified model. However, because x1 is now a fixed constant in the identified model, it should not have a parameter name in the new analysis. Thus, the data set ram is modified as follows :

data ram2(type=ram);     set ram;     if _name_ = 'x1' then do;        _name_ = ' ';_estim_ = 0.;     end;  run; 

The data set ram2 is now an OUTRAM= data set in which x1 is no longer a parameter. PROC CALIS reads the information (that is, the set of parameters and the model specification) in the data set ram2 for the identified model. As displayed in the following code, you can use the PARMS statement to specify the desired ordinal relationships between the parameters.

proc calis data=Kinzer method=max inram=ram2 tech=nr nobs=326;  title2 "Ordinally Related Factor Analysis, (Mcdonald,1980)";  title3 "Identified Model with X1=0";  parms t1-t10= 10 * 1.;        x2  =     + t1  *  t1;        x3  = x2  + t2  *  t2;        x4  = x3  + t3  *  t3;        x5  = x4  + t4  *  t4;        x6  = x5  + t5  *  t5;        x11 = x12 + t6  *  t6;        x10 = x11 + t7  *  t7;        x9  = x10 + t8  *  t8;        x8  = x9  + t9  *  t9;        x7  = x8  + t10 * t10;  bounds x13-x18 >= 0.;  run; 

Selected output for the identified model is displayed in Output 19.5.1.

Output 19.5.1: Factor Analysis with Ordinal Constraints
start example
                              Ordinally Related Factor Analysis, (Mcdonald,1980)                                            Identified Model with X1=0                                               The CALIS Procedure                           Covariance Structure Analysis: Maximum Likelihood Estimation                                     Parameter Estimates                   17                                     Functions (Observations)              21                                     Lower Bounds                           6                                     Upper Bounds                           0                                                Optimization Start   Active Constraints                                  0  Objective Function                      5.2552270182   Max Abs Gradient Element                 0.8821788922                                                                                                         Ratio                                                                                                       Between                                                                                                        Actual                                                                   Objective    Max Abs                    and                       Function         Active        Objective     Function   Gradient              Predicted   Iter    Restarts       Calls    Constraints         Function       Change    Element     Ridge       Change     1            0           2              0          3.14901       2.1062     1.0712         0        2.226     2            0           3              0          1.42725       1.7218     1.0902         0        2.064     3            0           4              0          0.41661       1.0106     0.7472         0        1.731     4            0           5              0          0.09260       0.3240     0.3365         0        1.314     5            0           6              0          0.09186     0.000731     0.3880         0       0.0123     6            0           8              0          0.04570       0.0462     0.2870    0.0313        0.797     7            0          10              0          0.03269       0.0130     0.0909    0.0031        0.739     8            0          16              0          0.02771      0.00498     0.0890    0.0800        0.682     9            0          17              0          0.02602      0.00168     0.0174    0.0400        0.776    10            0          19              0          0.02570     0.000323     0.0141    0.0800        0.630    11            0          21              0          0.02560     0.000103    0.00179     0.160        1.170    12            0          23              0          0.02559     7.587E-6   0.000670     0.160        1.423    13            0          24              0          0.02559     2.993E-6   0.000402    0.0400        1.010    14            0          27              0          0.02559     1.013E-6   0.000206     0.160        1.388    15            0          28              0          0.02559     1.889E-7   0.000202    0.0400        0.530    16            0          30              0          0.02559     1.803E-7   0.000097    0.0800        0.630    17            0          32              0          0.02559     4.845E-8   0.000035     0.160        1.340    18            0          33              0          0.02559     1.837E-9   0.000049    0.0400        0.125    19            0          35              0          0.02559      9.39E-9   0.000024    0.0800        0.579    20            0          37              0          0.02559     2.558E-9   6.176E-6     0.160        1.305                                               Optimization Results   Iterations                                         20 Function Calls                                     38   Jacobian Calls                                     21  Active Constraints                                 0   Objective Function                       0.0255871615 Max Abs Gradient Element                 6.1764582E-6   Ridge                                            0.04  Actual Over Pred Change                 1.3054368156        ABSGCONV convergence criterion satisfied.                                Ordinally Related Factor Analysis, (Mcdonald,1980)                                            Identified Model with X1=0                           Covariance Structure Analysis: Maximum Likelihood Estimation                           Fit Function                                          0.0256                           Goodness of Fit Index (GFI)                           0.9916                           GFI Adjusted for Degrees of Freedom (AGFI)            0.9557                           Root Mean Square Residual (RMR)                       0.0180                           Parsimonious GFI (Mulaik, 1989)                       0.2644                           Chi-Square                                            8.3158                           Chi-Square DF                                              4                           Pr > Chi-Square                                       0.0807                           Independence Model Chi-Square                         682.87                           Independence Model Chi-Square DF                          15                           RMSEA Estimate                                        0.0576                           RMSEA 90% Lower Confidence Limit                           .                           RMSEA 90% Upper Confidence Limit                      0.1133                           ECVI Estimate                                         0.1325                           ECVI 90% Lower Confidence Limit                            .                           ECVI 90% Upper Confidence Limit                       0.1711                           Probability of Close Fit                              0.3399                           Bentler's Comparative Fit Index                       0.9935                           Normal Theory Reweighted LS Chi-Square                8.2901                           Akaike's Information Criterion                        0.3158                           Bozdogan's (1987) CAIC                              -18.8318                           Schwarz's Bayesian Criterion                        -14.8318                           McDonald's (1989) Centrality                          0.9934                           Bentler & Bonett's (1980) Non-normed Index            0.9758                           Bentler & Bonett's (1980) NFI                         0.9878                           James, Mulaik, & Brett (1982) Parsimonious NFI        0.2634                           Z-Test of Wilson & Hilferty (1931)                    1.4079                           Bollen (1986) Normed Index Rho1                       0.9543                           Bollen (1988) Non-normed Index Delta2                 0.9936                           Hoelter's (1983) Critical N                              372                                Ordinally Related Factor Analysis, (Mcdonald,1980)                                            Identified Model with X1=0                           Covariance Structure Analysis: Maximum Likelihood Estimation                                        Estimated Parameter Matrix F[6:8]                                           Standard Errors and t Values                                                  General Matrix               Fact1         Fact2      Uvar1         Uvar2         Uvar3         Uvar4        Uvar5         Uvar6  Obs1             0        0.7101     0.7131             0             0            0             0             0                   0        0.0435     0.0404             0             0            0             0             0                   0       16.3317    17.6427             0             0            0             0             0                              <x7>      [x13]  Obs2        0.0261        0.7101          0        0.6950             0            0             0             0              0.0875        0.0435          0        0.0391             0            0             0             0              0.2977       16.3317          0       17.7571             0            0             0             0                <x2>          <x8>                    [x14]  Obs3        0.2382        0.6827          0             0        0.6907            0             0             0              0.0851        0.0604          0             0        0.0338            0             0             0              2.7998       11.3110          0             0       20.4239            0             0             0                <x3>          <x9>                                  [x15]  Obs4        0.3252        0.6580          0             0             0        0.6790            0             0              0.0823        0.0621          0             0             0        0.0331            0             0              3.9504       10.5950          0             0             0       20.5361            0             0                <x4>         <x10>                                                [x16]  Obs5        0.5395        0.5528          0             0             0            0        0.6249             0              0.0901        0.0705          0             0             0            0        0.0534             0              5.9887        7.8359          0             0             0            0       11.7052             0                <x5>         <x11>                                                             [x17]  Obs6        0.5395        0.4834          0             0             0            0             0        0.7005              0.0918        0.0726          0             0             0            0             0        0.0524              5.8776        6.6560          0             0             0            0             0       13.3749                <x6>         [x12]                                                                             [x18]                                Ordinally Related Factor Analysis, (Mcdonald,1980)                                            Identified Model with X1=0                           Covariance Structure Analysis: Maximum Likelihood Estimation                                    Additional PARMS and Dependent Parameters                                     The Number of Dependent Parameters is 10                                                              Standard                                 Parameter      Estimate         Error    t Value                                 t1              0.16143       0.27111       0.60                                 t2              0.46060       0.09289       4.96                                 t3              0.29496       0.13702       2.15                                 t4              0.46297       0.10756       4.30                                 t5            0.0000522          1311       0.00                                 t6              0.26347       0.12203       2.16                                 t7              0.32430       0.09965       3.25                                 t8              0.15721       0.21134       0.74                                 t9              0.16543       0.20537       0.81                                 t10          -4.2528E-7       0.47736      -0.00                                 x7              0.71007       0.04348      16.33                                 x2              0.02606       0.08753       0.30                                 x8              0.71007       0.04348      16.33                                 x3              0.23821       0.08508       2.80                                 x9              0.68270       0.06036      11.31                                 x4              0.32521       0.08232       3.95                                 x10             0.65799       0.06210      10.60                                 x5              0.53955       0.09009       5.99                                 x11             0.55282       0.07055       7.84                                 x6              0.53955       0.09180       5.88 
end example
 

By fixing the loading b 11 ( x1 ) to constant 0, you obtain 2 =8 . 316 on df =4 ( p < . 09). McDonald reports the same 2 value, but on df =3, and thus, he obtains a smaller p -value. An analysis without the fixed loading shows typical signs of an unidentified problem: after more iterations it leads to a parameter set with a 2 value of 8.174 on df =3. A singular Hessian matrix occurs.

The singular Hessian matrix of the unidentified problem slows down the convergence rate of the Levenberg-Marquardt algorithm considerably. Compared to the unidentified problem with 30 iterations, the identified problem needs only 20 iterations. Note that the number of iterations may depend on the precision of the processor.

The same model can also be specified using the LINCON statement for linear constraints:

proc calis data=Kinzer method=max tech=lm edf=325;     Title3 "Identified Model 2";     cosan f(8,gen)*I(8,ide);     matrix f        [,1]  = 0. x2-x6,        [,2]  = x7-x12,        [1,3] = x13-x18;      lincon x2 <= x3,             x3 <= x4,             x4 <= x5,             x5 <= x6,             x7 >= x8,             x8 >= x9,             x9 >= x10,             x10 >= x11,             x11 >= x12;     bounds x2 x13-x18 >= 0.;  run; 

Example 19.6. Longitudinal Factor Analysis

The following example (McDonald 1980) illustrates both the ability of PROC CALIS to formulate complex covariance structure analysis problems by the generalized COSAN matrix model and the use of program statements to impose nonlinear constraints on the parameters. The example is a longitudinal factor analysis using the Swaminathan (1974) model. For m =3 tests, k =3 occasions, and r =2 factors the matrix model is formulated in the section 'First-Order Autoregressive Longitudinal Factor Model' on page 554 as follows:

click to expand

The Swaminathan longitudinal factor model assumes that the factor scores for each ( m ) common factor change from occasion to occasion ( k ) according to a first-order autoregressive scheme. The matrix F 1 contains the k factor loading matrices B 1 , B 2 , B 3 (each is n m ). The matrices D 2 , D 3 , S 2 , S 3 and U ij ,i,j =1 , ,k, are diagonal, and the matrices D i and S i ,i =2 , ,k, are subjected to the constraint

Since the constructed correlation matrix given in McDonald's (1980) paper is singular, only unweighted least-squares estimates can be computed.

data Mcdon(TYPE=CORR);  Title "Swaminathan's Longitudinal Factor Model, Data: McDONALD(1980)";  Title2 "Constructed Singular Correlation Matrix, GLS & ML not possible";     _TYPE_ = 'CORR'; INPUT _NAME_ $ Obs1-Obs9;     datalines;  Obs1  1.000     .      .      .      .      .      .      .      .  Obs2   .100   1.000    .      .      .      .      .      .      .  Obs3   .250    .400  1.000    .      .      .      .      .      .  Obs4   .720    .108   .270  1.000    .      .      .      .      .  Obs5   .135    .740   .380   .180  1.000    .      .      .      .  Obs6   .270    .318   .800   .360   .530  1.000    .      .      .  Obs7   .650    .054   .135   .730   .090   .180  1.000    .      .  Obs8   .108    .690   .196   .144   .700   .269   .200  1.000    .  Obs9   .189    .202   .710   .252   .336   .760   .350   .580  1.000       ;  proc calis data=Mcdon method=ls tech=nr nobs=100;  cosan B(6,Gen) * D1(6,Dia) * D2(6,Dia) * T(6,Low) * D3(6,Dia,Inv)                 * D4(6,Dia,Inv) * P(6,Dia) + U(9,Sym);     Matrix B              [ ,1]= X1-X3,              [ ,2]= 0. X4-X5,              [ ,3]= 3 * 0. X6-X8,              [ ,4]= 4 * 0. X9-X10,              [ ,5]= 6 * 0. X11-X13,              [ ,6]= 7 * 0. X14-X15;     Matrix D1              [1,1]=2*1.X16X17X16X17;     Matrix D2              [1,1]=4*1.X18X19;     Matrix T              [1,1]=6*1.,              [3,1]=4*1.,              [5,1]=2*1.;     Matrix D3              [1,1]=4*1.X18X19;     Matrix D4              [1,1]=2*1.X16X17X16X17;     Matrix P              [1,1]=2*1.X20-X23;     Matrix U              [1,1]= X24-X32,              [4,1]= X33-X38,              [7,1]= X39-X41;     Bounds 0. <= X24-X32,           -1. <= X16-X19 <= 1.;     X20 = 1. - X16 * X16;     X21 = 1. - X17 * X17;     X22 = 1. - X18 * X18;     X23 = 1. - X19 * X19;  run; 

Because this formulation of Swaminathan's model in general leads to an unidentified problem, the results given here are different from those reported by McDonald (1980). The displayed output of PROC CALIS also indicates that the fitted central model matrices P and U are not positive definite. The BOUNDS statement constrains the diagonals of the matrices P and U to be nonnegative, but this cannot prevent U from having three negative eigenvalues. The fact that many of the published results for more complex models in covariance structure analysis are connected to unidentified problems implies that more theoretical work should be done to study the general features of such models.




SAS.STAT 9.1 Users Guide (Vol. 1)
SAS/STAT 9.1 Users Guide, Volumes 1-7
ISBN: 1590472438
EAN: 2147483647
Year: 2004
Pages: 156

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net