Pelle Ehn, Wittgenstein s Language Games


Pelle Ehn, Wittgenstein's Language Games

In Work-Oriented Development of Software Artifacts (Ehn 1988), Pelle Ehn describes a series of projects that explored ways of making software more appropriate to its final use, easier to use, and made by both programmers and end users.

The high point of the book for me is the way in which he considers software development in the context of four philosophers: Descartes, Marx, Heidegger, and Wittgenstein.

A person working in the style of Descartes thinks of an external reality worth describing and turns her efforts toward capturing that reality. She is therefore interested in the match to reality of the requirements, models, and code. This Cartesian approach filled our field's first half-century.

A person working in the style of Marx first asks, "Whom does this new system benefit? How does its deployment change the social power structure?" This is a meaningful question to consider, whether you like Marx's political theories or not.

A person working in the style of Heidegger considers the efficacy of the system as a tool. Ideally, the user should not "see" the system at all. She should see through the system to the task being performed. When I am typing a document, for example, I see the page growing text; I don't "see" the word processor. An accomplished pianist sees the music being formed, not the piano; a good carpenter sees the nail going into the wood, not the hammering tool. Heidegger's frame of evaluation helps us produce systems more fit for use.

It is only the style of Wittgenstein that opposes the style of Descartes. A person working in this style views the unfolding of the software design as the unfolding of a language game, in which new words are added to the language over time.

This immediately links to software development as a cooperative game of invention and communication. I probably owe a good deal of my construction of the cooperative game model to Ehn's writings. I had read and forgotten the following article years before working out the cooperative game idea. As I started to write this book, I reviewed this article and was shocked to see how many of my words echoed Ehn's.

Ehn is concerned with the building of shared experience through shared practice, of using practice directly as a basis for discovering needs. In other words, he is working with tacit knowledge. More than that, he highlights the place of skill in carrying out practices (it is interesting to read Musashi's words pointing out much the same). Although skill is a topic I have mentioned, Ehn develops it much more thoughtfully and completely.

I took the game thinking in a different direction. I am concerned with playing a group game amicably, so that communication can take place at all. You will see that Ehn's ideas complement the rest of the ideas in this book.

Pelle Ehn expresses it much better in his own words than I can through summaries. Work-Oriented Development of Software Artifacts is out of print, sadly. However, this excerpt from "Scandinavian Design: On Participation and Skill" (Ehn 1992) contains the line of thinking I feel is so important.

The article is longer than I can reproduce here. In this extract, I added italics to emphasize points relevant to the notion of cooperative games.

"On Participation and Skill"

. . .

In the following, I will propose that this new understanding can be buttressed by an awareness of language games and the ordinary language philosophy of Ludwig Wittgenstein. My focus is on the shift in design from language as description towards language as action.

Rethinking Systems Descriptions

A few years ago I was struck by something I had not noticed before. While thinking about how perspectives make us select certain aspects of reality as important in a description, I realized I had completely overlooked my own presumption that descriptions in one way or another are mirror images of a given reality. My earlier reasoning had been that because there are different interests in the world, we should always question the objectivity of design choices that claimed to flow from design as a process of rational decision making. Hence, I had argued that we needed to create descriptions from different perspectives in order to form a truer picture. I did not, however, question the Cartesian epis ontology of an inner world of experiences (mind) and an outer world of objects (external reality). Nor did I question the assumption that language was our way of mirroring this outer world of real objects. By focusing on which objects and which relations should be represented in a systems description, I took for granted the Cartesian mind-body dualism that Wittgenstein had so convincingly rejected in Philosophical Investigations (1953). Hence, although my purpose was the opposite, my perspective blinded me to the subjectivity of craft, artistry, passion, love, and care in the system descriptions.

Our experiences with the UTOPIA project caused me to re-examine my philosophical assumptions. Working with the end users of the design, the graphics workers, some design methods failed while others succeeded. Requirement specifications and systems descriptions based on information from interviews were not very successful. Improvements came when we made joint visits to interesting plants, trade shows, and vendors and had discussions with other users; when we dedicated considerably more time to learning from each other, designers from graphics workers and graphics workers from designers; when we started to use design-by-doing methods and descriptions such as mockups and work organization games; and when we started to understand and use traditional tools as a design ideal for computer-based systems.

The turnaround can be understood in the light of two Wittgensteinian lessons. The first is not to underestimate the importance of skill in design. As Peter Winch (1958) has put it, "A cook is not a man who first has a vision of a pie and then tries to make it. He is a man skilled in cookery, and both his projects and his achievements spring from that skill." The second is not to mistake the role of description methods in design: Wittgenstein argues convincingly that what a picture describes is determined by its use.

In the following I will illustrate how our "new" UTOPIAN design methods may be understood from a Wittgensteinian position, that is, why design-by-doing and a skill-based participatory design process works. More generally, I will argue that design tools such as models, prototypes, mockups, descriptions, and representations act as reminders and paradigm cases for our contemplation of future computer-based systems and their use. Such design tools are effective because they recall earlier experiences to mind. It is in this sense that we should understand them as representations. I will begin with a few words on practice, the alternative to the "picture theory of reality."

Practice Is Reality

Practice as the social construction of reality is a strong candidate for replacing the picture theory of reality. In short, practice is our everyday practical activity. It is the human form of life. It precedes subject-object relations. Through practice, we produce the world, both the world of objects and our knowledge about this world. Practice is both action and reflection. But practice is also a social activity; it is produced in cooperation with others. To share practice is also to share an understanding of the world with others. However, this production of the world and our understanding of it take place in an already existing world. The world is also the product of former practice. Hence, as part of practice, knowledge has to be understood sociallyas producing or reproducing social processes and structures as well as being the product of them (Kosik, 1967; Berger & Luckmann, 1966).

Against this background, we can understand the design of computer applications as a concerned social- and historical-conditioned activity in which tools and their use are envisioned. This is an activity and form of knowledge that is both planned and creative.

Once struck by the "naive" Cartesian presumptions of a picture theory, what can be gained in design by shifting focus from the correctness of descriptions to intervention into practice? What does it imply to take the position that what a picture describes is determined by its use? Most importantly, it sensitizes us to the crucial role of skill and participation in design, and to the opportunity in practical design to transcend some of the limits of formalization through the use of more action-oriented design artifacts.

Language as Action

Think of the classical example of a carpenter and his or her hammering activity. In the professional language of carpenters, there are not only hammers and nails. If the carpenter were making a chair, other tools used would include a draw-knife, a brace, a trying plane, a hollow plane, a round plane, a bow-saw, a marking gauge, and chisels (Seymour, 1984). The materials that he works with are elm planks for the seats, ash for the arms, and oak for the legs. He is involved in saddling, making spindles, and steaming.

Are we as designers of new tools for chairmaking helped by this labeling of tools, materials, and activities? In a Wittgensteinian approach the answer would be: only if we understand the practice in which these names make sense. To label our experiences is to act deliberately. To label deliberately, we have to be trained to do so. Hence, the activity of labeling has to be learned. Language is not private but social. The labels we create are part of a practice that constitutes social meaning. We cannot learn without learning something specific. To understand and to be able to use is one and the same (Wittgenstein, 1953). Understanding the professional language of chairmaking, and any other language-game (to use Wittgenstein's term), is to be able to master practical rules we did not create ourselves. The rules are techniques and conventions for chairmaking that are an inseparable part of a given practice.

To master the professional language of chairmaking means to be able to act in an effective way together with other people who know chairmaking. To "know" does not mean explicitly knowing the rules you have learned, but rather recognizing when something is done in a correct or incorrect way. To have a concept is to have learned to follow rules as part of a given practice. Speech acts are, as a unity of language and action, part of practice. They are not descriptions but below I will elaborate on language-games, focusing on the design process descriptions in design, design artifacts, and knowledge in the design of computer applications.

Language-Games

To use language is to participate in language-games. In discussing how we in practice follow (and sometimes break) rules as a social activity, Wittgenstein asks us to think of games, how they are made up and played. We often think of games in terms of a playful, pleasurable engagement. I think this aspect should not be denied, but a more important aspect for our purpose here is that games are activities, as are most of the common language-games we play in our ordinary language.

Language-games, like the games we play as children, are social activities. To be able to play these games, we have to learn to follow rules, rules that are socially created but far from always explicit. The rule-following behavior of being able to play together with others is more important to a game than the specific explicit rules. Playing is interaction and cooperation. To follow the rules in practice means to be able to act in a way that others in the game can understand. These rules are embedded in a given practice from which they cannot be distinguished. To know them is to be able to "embody" them, to be able to apply them to an open class of cases.

We understand what counts as a game not because we have an explicit definition but because we are already familiar with other games. There is a kind of family resemblance between games. Similarly, professional language-games can be learned and understood because of their family resemblance to other language-games that we know how to play.

Language-games are performed both as speech acts and as other activities, as meaningful practice within societal and cultural institutional frameworks. To be able to participate in the practice of a specific language-game, one has to share the form of life within which that practice is possible. This form of life includes our natural history as well as the social institutions and traditions into which we are born. This condition precedes agreed social conventions and rational reasoning. Language as a means of communication requires agreement not only in definitions, but also in judgments. Hence, intersubjective consensus is more fundamentally a question of shared background and language than of stated opinions (Wittgenstein, 1953).

This definition seems to make us prisoners of language and tradition, which is not really the case. Being socially created, the rules of language games, like those of other games, can also be socially altered. There are, according to Wittgenstein, even games in which we make up and alter the rules as we go along. Think of systems design and use as language games. The very idea of the interventionistic design language-game is to change the rules of the language-game of use in a proper way.

The idea of language-games entails an emphasis on how we linguistically discover and construct our world. However, language is understood as our use of it, as our social, historic, and intersubjective application of linguistic artifacts. As I see it, the language-game perspective therefore does not preclude consideration of how we also come to understand the world by use of other tools.

Tools and objects play a fundamental role in many language-games. A hammer is in itself a sign of what one can do with it in certain language-games. And so is a computer application. These signs remind one of what can be done with them. In this light, an important aspect in the design of computer applications is that its signs remind the users of what they can do with the application in the language-games of use (Brock, 1986). The success of "what-you-see-is-what-you-get" and "direct manipulation" user interfaces does not have to do with how they mirror reality in a more natural way, but with how they provide better reminders of the users' earlier experiences (Bødker, forthcoming). This is also, as will be discussed in the following, the case with the tools that we use in the design process.

Knowledge and Design Artifacts

As designers we are involved in reforming practice, in our case typically computer-based systems and the way people use them. Hence, the language-games of design change the rules for other language-games, in particular those of the application's use. What are the conditions for this interplay and change to operate effectively?

A common assumption behind most design approaches seems to be that the users must be able to give complete and explicit descriptions of their demands. Hence, the emphasis is on methods to support this elucidation by means of requirement specifications or system descriptions (Jackson, 1983; Yourdon, 1982).

In a Wittgensteinian approach, the focus is not on the "correctness" of systems descriptions in design, on how well they mirror the desires in the mind of the users, or on how correctly they describe existing and future systems and their use. Systems descriptions are design artifacts. In a Wittgensteinian approach, the crucial question is how we use them, that is, what role they play in the design process.

The rejection of an emphasis on the "correctness" of descriptions is especially important. In this, we are advised by the author of perhaps the strongest arguments for a picture theory and the Cartesian approach to designthe young Wittgenstein in Tractatus Logico-Philosophicus (1923). The reason for this rejection is the fundamental role of practical knowledge and creative rule following in language-games.

Nevertheless, we know that systems descriptions are useful in the language-game of design. The new orientation suggested in a Wittgensteinian approach is that we see such descriptions as a special kind of artifact that we use as "typical examples" or "paradigm cases." They are not models in the sense of Cartesian mirror images of reality (Nordenstam, 1984). In the language-game of design, we use these tools as reminders for our reflection on future computer applications and their use. By using such design artifacts, we bring earlier experiences to mind, and they bend our way of thinking of the past and the future. I think that this is why we should understand them as representations (Kaasboll, forthcoming). And this is how they inform our practice. If they are good design artifacts, they will support good moves within a specific design language-game.

The meaning of a design artifact is its use in a design language-game, not how it "mirrors reality." Its ability to support such use depends on the kinds of experience it evokes, its family resemblance to tools that the participants use in their everyday work activity. Therein lies a clue to why the breakthrough in the UTOPIA project was related to the use of prototypes and mockups. Since the design artifacts took the form of reminders or paradigm cases, they did not merely attempt to mirror a given or future practice linguistically. They could be experienced through the practical use of a prototype or mockup. This experience could be further reflected upon in the language-game of design, either in ordinary language or in an artificial one.

A good example from the UTOPIA project is an empty cardboard box with "desktop laser printer" written on the top. There is no functionality in this mockup. Still, it works very well in the design game of envisioning the future work of makeup staff. It reminded the participating typographers of the old "proof machine" they used to work with in lead technology. At the same time, it suggested that with the help of new technology, the old proof machine could be reinvented and enhanced.

This design language-game was played in 1982. At that time, desktop laser printers only existed in advanced research laboratories, and certainly typographers had never heard of them. To them, the idea of a cheap laser printer was "unreal."

It was our responsibility as professional designers to be aware of such future possibilities and to suggest them to the users. It was also our role to suggest this technical and organizational solution in such a way that the users could experience and envision what it would mean in their practical work, before the investment of too much time, money, and development work. Hence, the design game with the mockup laser printer. The mockup made sense to all participantsusers and designers (Ehn & Kyng, 1991).

This focus on nonlinguistic design artifacts is not a rejection of the importance of linguistic ones. Understood as triggers for our imagination rather than as mirror images of reality, they may well be our most wonderful human inventions. Linguistic design artifacts are very effective when they challenge us to tell stories that make sense to all participants.

Practical Understanding and Propositional Knowledge

There are many actions in a language-game, not least in the use of prototypes and mockups, that cannot be explicitly described in a formal language. What is it that the users know, that is, what have they learned that they can express in action, but not state explicitly in language? Wittgenstein (1953) asks us to "compare knowing and saying: how many feet high Mont Blanc ishow the word 'game' is usedhow a clarinet sounds. If you are surprised that one can know something you are perhaps thinking of a case like the first. Certainly not of one of the third."

In the UTOPIA project, we were designing new computer applications to be used in typographical page makeup. The typographers could tell us the names of the different tools and materials that they use such as knife, page ground, body text, galley, logo, halftone, frame, and spread. They could also tell when, and perhaps in which order, they use specific tools and materials to place an article. For example, they could say, "First you pick up the body text with the knife and place it at the bottom of the designated area on the page ground. Then you adjust it to the galley line. When the body text fits you get the headline, if there is not a picture," and so forth. What I, as designer, get to know from such an account is equivalent to knowing the height of Mont Blanc. What I get to know is very different from the practical understanding of really making up pages, just as knowing the height of Mont Blanc gives me very little of understanding the practical experience of climbing the mountain.

Knowledge of the first kind has been called propositional knowledge. It is what you have "when you know that something is the case and when you also can describe what you know in so many words" (Nordenstam, 1985). Propositional knowledge is not necessarily more reflective than practical understanding. It might just be something that I have been told, but of which I have neither practical experience nor theoretical understanding.

The second case, corresponding to knowing how the word game is used, was more complicated for our typographers. How could they, for example, tell us the skill they possess in knowing how to handle the knife when making up the page in pasteup technology? This is their practical experience from the language-games of typographic design. To show it, they have to do it.

And how should they relate what counts as good layout, the complex interplay of presence and absence, light and dark, symmetry and asymmetry, uniformity and variety? Could they do it in any other way than by giving examples of good and bad layouts, examples that they have learned by participating in the games of typographical design? As in the case of knowing how a clarinet sounds, this is typically sensuous knowing by familiarity with earlier cases of how something is, sounds, smells, and so on.

Practical understandingin the sense of practical experience from doing something and having sensuous experiences from earlier casesdefies formal description. If it were transformed into propositional knowledge, it would become something totally different.

It is hard to see how we as designers of computer systems for page makeup could manage to come up with useful designs without understanding how the knife is used or what counts as good layout. For this reason we had to have access to more than what can be stated as explicit propositional knowledge. We could only achieve this understanding by participating to some extent in the language-games of use of the typographical tools. Hence, participation applies not only to users participating in the language-game of design, but perhaps more importantly to designers participating in use. Some consequences of this position for organizing design language-games will be discussed in the following.

Rule Following and Tradition

Now, I turn to the paradox of rule-following behavior. As mentioned, many rules that we follow in practice can scarcely be distinguished from the behavior in which we perform them. We do not know that we have followed a rule until we have done it. The most important rules we follow in skillful performance defy formalization, but we still understand them. As Michael Polanyi (1973), the philosopher of tacit knowledge, has put it: "It is pathetic to watch the endless effortsequipped with microscopy and chemistry, with mathematics and electronicsto reproduce a single violin of the kind the half-literate Stradevarius turned out as a matter of routine more than 200 years ago." This is the traditional aspect of human rule-following behavior. Polanyi points out that what may be our most widely recognized, explicit, rule-based systemthe practice of Common Lawalso uses earlier examples as paradigm cases. Says Polanyi, "[Common Law] recognizes the principle of all traditionalism that practical wisdom is more truly embodied in action than expressed in the rules of action." According to Polanyi this is also true for science, no matter how rationalistic and explicit it claims to be: "While the articulate contents of science are successfully taught all over the world in hundreds of new universities, the unspecifiable art of scientific research has not yet penetrated to many of these." The art of scientific research defies complete formalization; it must be learned partly by examples from a master whose behavior the student trusts.

Involving skilled users in the design of new computer application when their old tools and working habits are redesigned is an excellent illustration of Polanyi's thesis. If activities that have been under such pressure for formalization as Law and Science are so dependent on practical experience and paradigm cases, why should we expect other social institutions that have been under less pressure of formalization to be less based on practical experience, paradigm cases, and tacit knowledge?

Rule Following and Transcendence

If design is rule-following behavior, is it also creative transcendence of traditional behavior. Again, this is what is typical of skillful human behavior, and is exactly what defies precise formalization. Through mastery of the rules comes the freedom to extend them. This creativity is based on the open-textured character of rule-following behavior. To begin with, we learn to follow a rule as a kind of dressage, but in the end we do it as creative activity (Dreyfus & Dreyfus, 1986). Mastery of the rules puts us in a position to invent new ways of proceeding. As the Wittgenstein commentator Alan Janik has put it: "There is always and ineliminably the possibility that we can follow the rule in a wholly unforeseen way. This could not happen if we had to have an explicit rule to go on from the start . . . the possibility of radical innovation is, however, the logical limit of description. This is what tacit knowledge is all about" (Janik, 1988). This is why we need a strong focus on skill both in design and in the use of computer systems. We focus on existing skills, not as to inhibit creative transcendence, but as a necessary condition for it.

But what is the role of "new" external ideas and experiences in design? How are tradition and transcendence united in a Wittgensteinian approach? It could, I believe, mean utilizing something like Berthold Brecht's theatrical "alienation" effect Verfremdungseffekt to highlight transcendental untried possibilities in the everyday practice by presenting a well-known practice in a new light: "the aspects of things that are most important to us are hidden because of their simplicity and familiarity" (Wittgenstein, 1953). However, as Peter Winch (1958, p. 119) put it, in a Wittgensteinian approach: "the only legitimate use of such a Verfremdungseffekt is to draw attention to the familiar and obvious, not to show that it is dispensable from our understanding."

Design artifacts, linguistic or not, may in a Wittgensteinian approach certainly be used to break down traditional understanding, but they must make sense in the users' ordinary language-games. If the design tools are effective, it is because they help users and designers to see new aspects of an already well-known practice, not because they convey such new ideas. It is I think fair to say that this focus on traditional skill in interplay with design skill may be a hindrance to really revolutionary designs. The development of radically new designs might require leveraging other skills and involving other potential users. Few designs, however, are really revolutionary, and for normal everyday design situations, the participation of traditionally skilled users is critical to the quality of the resulting product.

The tension between tradition and transcendence is fundamental to design. There can be a focus on tradition or transcendence in the systems being created. Should a word processor be designed as an extension of the traditional typewriter or as something totally new? Another dimension is professional competence: Should one design for the "old" skills of typographers or should new knowledge replace those skills in future use? Or again, with the division of labor and cooperation: Should the new design support the traditional organization in a composing room or suggest new ways of cooperation between typographers and journalists? There is also the tension between tradition and transcendence in the goods or services to be produced using the new system: Should the design support the traditional graphical production or completely new services, such as desktop publishing?

Tradition and transcendence, that is the dialectical foundation of design.

Design by Doing: New "Rules of the Game"

What do we as designers have to do to qualify as participants in the language-games of the users? What do users have to learn to qualify as participants in the language-game of design? And what means can we develop in design to facilitate these learning processes?

If designers and users share the same form of life, it should be possible to overcome the gap between the different language-games. It should, at least in principle, be possible to develop the practice of design to the point where there is enough family resemblance between a specific language-game of the users and the language-games in which the designers of the computer application are intervening. A mediation should be possible.

But what are the conditions required to establish this mediation? For Wittgenstein, it would make no sense to ask this question outside a given form of life: "If a lion could talk, we could not understand him" (1953). In the arguments below, I have assumed that the conditions for a common form of life are possible to create, that the lions and sheep of industrial life, as discussed in the first part of this chapter, can live together. This is more a normative standpoint of how design ought to be, a democratic hope rather than a reflection on current political conditions.

To develop the competence required to participate in a language-game requires a lot of learning within that practice. But, in the beginning, all one can understand is what one has already understood in another language-game. If we understand anything at all, it is because of the family resemblance between the two language-games.

What kind of design tools could support this interplay between language-games? I think that what we in the UTOPIA project called design-by-doing methodsprototyping, mockups, and scenariosare good candidates. Even joint visits to workplaces, especially ones similar to the ones being designed for, served as a kind of design tool through which designers and users bridged their language-games.

The language-games played in design-by-doing can be viewed both from the point of view of the users and of the designers. This kind of design becomes a language-game in which the users learn about possibilities and constraints of new computer tools that may become part of their ordinary language-games. The designers become the teachers that teach the users how to participate in this particular language-game of design. However, to set up these kind of language-games, the designers have to learn from the users.

However, paradoxical as it sounds, users and designers do not have to understand each other fully in playing language-games of design-by-doing together. Participation in a language-game of design and the use of design artifacts can make constructive but different sense to users and designers. Wittgenstein (1953) notes that "when children play at trains their game is connected with their knowledge of trains. It would nevertheless be possible for the children of a tribe unacquainted with trains to learn this game from others, and to play it without knowing that it was copied from anything. One might say that the game did not make the same sense as to us." As long as the language-game of design is not a nonsense activity to any participant but a shared activity for better understanding and good design, mutual understanding may be desired but not really required.

User Participation and Skill

The users can participate in the language-game of design because the application of the design artifacts gives their design activities a family resemblance with the language-games that they play in ordinary use situations. An example from the UTOPIA project is a typographer sitting at a mockup of a future workstation for page makeup, doing page makeup on the simulated future computer tool.

The family resemblance is only one aspect of the methods. Another aspect involves what can be expressed. In design-by-doing, the user is able to express both propositional knowledge and practical understanding. Not only could, for example, the typographer working at the mockup tell that the screen should be bigger to show a full page spreadsomething important in page makeuphe could also show what he meant by "cropping a picture" by actually doing it as he said it. It was thus possible for him to express his practical understanding, his sensuous knowledge by familiarity. He could, while working at the mockup, express the fact that when the system is designed one way he can get a good balanced page, but not when it is designed another way.

Designer Participation and Skill

For us as designers, it was possible to express both propositional knowledge and practical understanding about design and computer systems. Not only could we express propositional knowledge such as "design-by-doing design tools have many advantages as compared with traditional systems descriptions" or "bit-map displays bigger than 22 inches and with a resolution of more than 2000 x 2000 pixels are very expensive," but in the language-game of design-by-doing, we could also express practical understanding of technical constraints and possibilities by "implementing" them in the mockup, prototype, simulation, or experimental situation. Simulations of the user interface were also important in this language-game of design.

As designers, our practical understanding will mainly be expressed in the ability to construct specific language-games of design in such a way that the users can develop their understanding of future use by participating in design processes.

As mentioned above, there is a further important aspect of language-games: We make up the rules as we go along. A skilled designer should be able to assist in such transcendental rule-breaking activities. Perhaps, this is the artistic competence that a good designer needs.

To really learn the language-game of the use activity by fully participating in that language-game is, of course, an even more radical approach for the designer. Less radical but perhaps more practical would be for designers to concentrate design activity on just a few language-games of use, and for us to develop a practical understanding of useful specific language-games of design (Ehn & Kyng, 1987). Finally, there seems to be a new role for the designer as the one who sets the stage for a shared design language-game that makes sense to all participants.

Some Lessons on Design, Skill, and Participation

As in the first practice-oriented part of this paper on designing for democracy at work, I end this second philosophically oriented part on skill-based participatory design with some lessons for work-oriented design.

General lessons on work-oriented design include:

  1. Understanding design as a process of creating new language-games that have family resemblance with the language-games of both users and designers gives us an orientation for doing work-oriented design through skill-based participationa way of doing design that may help us transcend some of the limits of formalization. Setting up these design language-games is a new role for the designer.

  2. Traditional "systems descriptions" are not sufficient in a skill-based participa-tory design approach. Design artifacts should not be seen primarily as means for creating true "pictures of reality," but as means to help users and designers discuss and experience current situations and envision future ones.

  3. "Design-by-doing" design approaches such as the use of mockups and other prototyping design artifacts make it possible for ordinary users to use their practical skill when participating in the design process.

Lessons on skill in the design of computer-based systems include:

  1. Participatory design is a learning process in which designers and users learn from each other.

  2. Besides propositional knowledge, practical understanding is a type of skill that should be taken seriously in a design language-game since the most important rules we follow in skillful performance are embedded in practice and defy formalization.

  3. Creativity depends on the open-textured character of rule-following behavior, hence a focus on traditional skill is not a drawback to creative transcendence but a necessary condition. Supporting the dialectics between tradition and transcendence is the heart of design.

Lessons on participation in design of computer-based systems include:

  1. Really participatory design requires a shared form of lifea shared social and cultural background and a shared language. Hence, participatory design means not only users participating in design but also designers participating in use. The professional designer will try to share practice with the users.

  2. To make real user participation possible, a design language-game must be set up in such a way that it has a family resemblance to language-games the users have participated in before. Hence, the creative designer should be concerned with the practice of the users in organizing the design process, and understand that every new design language-game is a unique situated design experience. There is, however paradoxical it may sound, no requirement that the design language-game make the same sense to users and designers. There is only [the] requirement that the designer set the stage for a design language-game in which participation makes sense to all participants.

Beyond the Boredom of Design

Given the Scandinavian societal, historical, and cultural setting, the first part of this chapter focused on the democratic aspect of skill-based participatory design, especially the important role of local trade unions and their strategies for user participation. In the second part, some ideas inspired by Ludwig Wittgenstein's philosophical investigations were applied to the everyday practice of skill-based participatory design. Practical understanding and family resemblance between language-games were presented as fundamental concepts for work-oriented design.

The concept of language-games is associated with playful activity, but what practical conditions are needed for such pleasurable engagement in design? Is the right to democratic participation enough?

In fact, the experiences from the work-oriented design projects indicates that most users find design work boring, sometimes to the point where they stop participating. This problem is not unique to the Scandinavian work-oriented design tradition. It has, for example, been addressed by Russell Ackoff (1974), who concluded that participation in design can be only successful if it meets three conditions: (1) it makes a difference for the participants, (2) implementation of the results is likely, and (3) it is fun.

The first two points concern the political side of participation in design. Users must have a guarantee that their design efforts are taken seriously. The last point concerns the design process. No matter how much influence participation may give, it has to transcend the boredom of traditional design meetings to really make design meaningful and full of involved action. The design work should be playful. In our own later projects, we have tried to take this challenge seriously and have integrated the use of future workshops, metaphorical design, role playing and organizational games into work-oriented design (Ehn & Sjogren, 1991).

Hence, the last lesson from Scandinavian designs is that formal democratic and participatory procedures for designing computer-based systems for democracy at work are not sufficient. Our design language-games must also be organized in a way that makes it possible for ordinary users not only to utilize their practical skill in the design work, but also to have fun while doing so.

. . .

Reflections on Ehn's Writing

Each time I read Ehn's article, I discover that I may be more in debt to his writing than I previously thought. Rereading it just prior to writing this paragraph, I was struck by his use of the Shu-Ha-Ri construct, to his attention to "understanding through doing," and his understanding of how people grow new understanding through the act of doing.

I evidently wasn't ready to read very many of his words in 1993 and have grown into them over the years. It makes me wonder how many other concepts he mentions, but which I haven't yet noticed.

I hope you will take the time to reread this article in another year or two.



Agile Software Development. The Cooperative Game
Agile Software Development: The Cooperative Game (2nd Edition)
ISBN: 0321482751
EAN: 2147483647
Year: 2004
Pages: 126

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net