Introduction


This all-in-one book tells you what you need to know, why you need to know it, and how to apply this knowledge to create a campus network that includes as many or as few of today's technologies as you require. This book starts, in Part I, "Designing Networks," with an introduction to the design process, network design, and some models that can be used as a design is developed. We then describe, in Part II, "Technologies: What You Need to Know and Why You Need to Know It," fundamental technologies in detail, including not only the mechanics of each but also why the technology can be important for your design. Examples are included throughout the book to emphasize how the concepts can be implemented. The book concludes with Part III, "Designing Your Network: How to Apply What You Know," a comprehensive case study about a fictitious company called Venti Systems, a manufacturer of high-end automotive power modules. Venti Systems is in the process of acquiring two other companies: one is located close to Venti, in eastern Canada, and the other is located on the West Coast of the United States. A new headquarters will be home for the combined operations of Venti and for one of the acquired companies, to achieve better synergy and to consolidate personnel and manufacturing facilities. The second acquired company will remain in its current West Coast facilities as a branch office. The design methodologies discussed in Part I and the technologies discussed in Part II are applied to this case study, as appropriate.

Campus Network Design Fundamentals is part of the Cisco Press Fundamentals Series, and therefore focuses on readers who are already in the networking field and who now want to gain a solid understanding of how to design campus networks. We assume that readers understand basic networking concepts and are familiar with basic networking terminology; however, we also provide Appendix B, "Network Fundamentals," so that readers can review any of these basic concepts that they might be less familiar with.

The book comprises three parts, which include 12 chapters, followed by four appendixes.

Part I, "Designing Networks," consists of one chapter about network design:

  • Chapter 1, "Network Design," introduces the network design process and two network design models.

Part II, "Technologies: What You Need to Know and Why You Need to Know It," introduces various technologies, and for each discusses what you need to know, the business case for why you might want to use this technology, and how the technology is used in network designs:

  • Chapter 2, "Switching Design," discusses how switches are used in network design. Topics include the Spanning Tree Protocol (STP), virtual local-area networks (VLANs), two types of Layer 3 switching [multilayer switching [MLS] and Cisco Express Forwarding [CEF]), and security in a switched environment.

  • Chapter 3, "IPv4 Routing Design," describes Internet Protocol version 4 (IPv4) addressing and address design considerations. The factors differentiating the available IPv4 routing protocols are also described, followed by a discussion of the specific protocols. The considerations for choosing the routing protocol (or protocols) for your network complete this chapter.

  • Chapter 4, "Network Security Design," explains concepts that relate to network security. Attack types, mitigation techniques, and security equipment such as firewalls, authentication systems, intrusion detection systems, traffic-filtering services, and virtual private networks (VPNs) are presented.

  • Chapter 5, "Wireless LAN Design," describes wireless LAN (WLAN) technology and how it improves mobility. You discover the concepts that surround wireless networks, with a special emphasis on the technology, design, and security.

  • Chapter 6, "Quality of Service Design," discusses how to design quality of service (QoS) into a network. Topics include the QoS-related requirements for various types of traffic and two models for deploying end-to-end QoS in a network: Integrated Services (IntServ) and Differentiated Services (DiffServ). QoS tools, including classification and marking, policing and shaping, congestion avoidance, congestion management, and link-specific tools, are explained. The Cisco Automatic QoS (AutoQoS) tool, which provides a simple, automatic way to enable QoS configurations in conformance with the Cisco best-practice recommendations, is introduced.

  • Chapter 7, "Voice Transport Design," introduces how to design a network that will carry voice traffic. The mechanics of voice transport and QoS for voice are explored. The components required in a Voice over IP (VoIP) network and in an IP telephony network are described. The standard for how voice calls are coded and compressed are introduced, and the bandwidth requirements for voice traffic are explored.

  • Chapter 8, "Content Networking Design," describes how content networking (CN) can be implemented to provide content to users as quickly and efficiently as possible. The services provided under CN and the components that provide those servicesthe content engine, content router, content distribution and management device, and content switchare described.

  • Chapter 9, "Network Management Design," introduces how the management of networks can be included in designs. The related International Organization for Standardization (ISO) standard is described, and various protocols and tools available for network management are introduced. The chapter includes a description of network management strategy and how performance measurements can be made to ensure that requirements are being met.

  • Chapter 10, "Other Enabling Technologies," briefly discusses IP multicast, increasing network availability, storage networking, and IP version 6 (IPv6).

Part III, "Designing Your Network: How to Apply What You Know," comprises a case study, first providing the background information and context and then providing a solution. The design methodologies discussed in Part I and the technologies discussed in Part II are applied to this case network, as appropriate:

  • Chapter 11, "Case Study Context: Venti Systems," introduces a case study of a fictitious company called Venti Systems. The chapter also presents background information on Venti Systems and the two companies acquired by Venti. The requirements for the network after the acquisitions are complete are also developed.

  • Chapter 12, "Case Study Solution: Venti Systems," provides a comprehensive network design solution for Venti Systems after the acquisition is complete, based on the requirements identified in Chapter 11.

The following four appendixes complete the book:

  • Appendix A, "References," lists websites and other external readings that are referred to throughout this book.

  • Appendix B, "Network Fundamentals," introduces some fundamental concepts and terminology that are the foundation for the other sections of the book.

  • Appendix C, "Decimal-Binary Conversion," describes how to convert between the binary and decimal numbering systems.

  • Appendix D, "Abbreviations," identifies key abbreviations, acronyms, and initialisms in the book.

Note

The website references in this book were accurate at the time of writing; however, they might have since changed. If a URL is unavailable, you might try conducting a search using the title as key words in a search engine such as Google (http://www.google.com).


The notes and sidebars found in this book provide extra information on a subject.

Key Point

Key Points highlight crucial and fundamental information that is important for understanding the topic at hand.





Campus Network Design Fundamentals
Campus Network Design Fundamentals
ISBN: 1587052229
EAN: 2147483647
Year: 2005
Pages: 156

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net