Cryptography: Theory and Practice:Zero-knowledge Proofs

cryptography: theory and practice Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC
ISBN: 0849385210   Pub Date: 03/17/95
  

Previous Table of Contents Next


13.2 Perfect Zero-knowledge Proofs

Although interactive proof systems are of interest in their own right, the most interesting type of interactive proof is a zero-knowledge proof. This is one in which Peggy convinces Vic that x possesses some specified property, but at the end of the protocol, Vic still has no idea of how to prove (himself) that x has this property. This is a very tricky concept to define formally, and we present an example before attempting any definitions.

In Figure 13.4, we present a zero-knowledge interactive proof for Graph Isomorphism. A small example will illustrate the workings of the protocol.

Example 13.2

Suppose G1 = (V, E1) and G2 = (V, E2), where V = {1, 2, 3, 4}, E1 = {12, 13, 14, 34} and E2 = {12, 13, 23, 24}. One isomorphism from G2 to G1 is the permutation σ = (4 1 3 2).

Now suppose in some round of the protocol that Peggy chooses the permutation π = (2 4 1 3). Then H has edge set {12, 13, 23, 24} (see Figure 13.5).

If Vic’s challenge is i = 1, then Peggy gives Vic the permutation π and Vic checks that the image of G1 under π is H. If Vic’s challenge is i = 2, then Peggy gives Vic the composition ρ = π σ = (3 2 1 4) and Vic checks that the image of G2 under ρ is H.

Completeness and soundness of the protocol are easy to verify. It is easy to see that the probablity that Vic accepts is 1 if G1 is isomorphic to G2. On the other hand, if G1 is not isomorphic to G2, then the only way for Peggy to deceive Vic is for her to correctly guess the value i that Vic will choose in each round, and write a (random) isomorphic copy of Gi on the communication tape. Her probability of correctly guessing Vic’s n random challenges is 2-n.


Figure 13.4  A perfect zero-knowledge interactive proof system for Graph Isomorphism


Figure 13.5  Peggy’s isomorphic graphs

All of Vic’s computations can be done in polynomial time (as a function of n, the number of vertices in G1 and G2). Although it is not necessary, notice that Peggy’s computations can also be done in polynomial time provided that she knows the existence of one permutation a such that the image of G2 under σ is G1.

Why would we refer to this proof system as a zero-knowledge proof? The reason is that, although Vic is convinced that G1 is isomorphic to G2, he does not gain any “knowledge” that would help him find a permutation σ that carries G2 to G1. All he sees in each round of the proof is a random isomorphic copy H of the graphs G1 and G2, together with a permutation that carries G1 to H or G2 to H (but not both!). But Vic can compute random isomorphic copies of these graphs by himself, without any help from Peggy. Since the graphs H are chosen independently and at random in each round of the proof, it seems unlikely that this will help Vic find an isomorphism from G1 to G2.

Let us look carefully at the information that Vic obtains by participating in the interactive proof system. We can represent Vic’s view of the interactive proof by means of a transcript that contains the following information:

1.  the graphs G1 and G2
2.  all the messages that are transmitted by both Peggy and Vic
3.  the random numbers used by Vic to generate his challenges.

Hence, a transcript T for the above interactive proof of Graph Isomorphism would have the following form:

The essential point, which is the basis for the formal definition of zero-knowledge proof, is that Vic (or anyone else) can forge transcripts — without participating in the interactive proof — that “look like” real transcripts. This can be done provided that the input graphs G1 and G2 are isomorphic. Forging is accomplished by means of the algorithm presented in Figure 13.6. The forging algorithm is a polynomial-time probabilistic algorithm. In the vernacular of zero-knowledge proofs, a forging algorithm is often called a simulator.


Previous Table of Contents Next

Copyright © CRC Press LLC



Cryptography. Theory and Practice
Modern Cryptography: Theory and Practice
ISBN: 0130669431
EAN: 2147483647
Year: 1995
Pages: 133
Authors: Wenbo Mao

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net