Chapter 2: An Overview of C


By far, the hardest thing about learning a programming language is the fact that no element exists in isolation. Instead, the components of the language work together. This interrelatedness makes it difficult to discuss one aspect of C# without involving another. To help overcome this problem, this chapter provides a brief overview of several C# features, including the general form of a C# program, some basic control statements, and operators. It does not go into too many details, but rather concentrates on the general concepts common to any C# program. Most of the topics discussed here are examined in greater detail in the remaining chapters of Part I.

Object-Oriented Programming

At the center of C# is object-oriented programming (OOP). The object-oriented methodology is inseparable from C#, and all C# programs are to at least some extent object oriented. Because of its importance to C#, it is useful to understand OOP’s basic principles before you write even a simple C# program.

OOP is a powerful way to approach the job of programming. Programming methodologies have changed dramatically since the invention of the computer, primarily to accommodate the increasing complexity of programs. For example, when computers were first invented, programming was done by toggling in the binary machine instructions using the computer’s front panel. As long as programs were just a few hundred instructions long, this approach worked. As programs grew, assembly language was invented so that a programmer could deal with larger, increasingly complex programs, using symbolic representations of the machine instructions. As programs continued to grow, high-level languages such as FORTRAN and COBOL were introduced that gave the programmer more tools with which to handle complexity. When these early languages began to reach their breaking point, structured programming languages, such as C, were invented.

At each milestone in the history of programming, techniques and tools were created to allow the programmer to deal with increasingly greater complexity. Each step of the way, the new approach took the best elements of the previous methods and moved forward. The same is true of object-oriented programming. Prior to OOP, many projects were nearing (or exceeding) the point where the structured approach no longer worked. A better way to handle complexity was needed, and object-oriented programming was the solution.

Object-oriented programming took the best ideas of structured programming and combined them with several new concepts. The result was a different and better way of organizing a program. In the most general sense, a program can be organized in one of two ways: around its code (what is happening) or around its data (what is being affected). Using only structured programming techniques, programs are typically organized around code. This approach can be thought of as “code acting on data.”

Object-oriented programs work the other way around. They are organized around data, with the key principle being “data controlling access to code.” In an object-oriented language, you define the data and the code that is permitted to act on that data. Thus, a data type defines precisely the operations that can be applied to that data.

To support the principles of object-oriented programming, all OOP languages, including C#, have three traits in common: encapsulation, polymorphism, and inheritance. Let’s examine each.

Encapsulation

Encapsulation is a programming mechanism that binds together code and the data it manipulates, and that keeps both safe from outside interference and misuse. In an object-oriented language, code and data can be bound together in such a way that a self-contained black box is created. Within the box are all necessary data and code. When code and data are linked together in this fashion, an object is created. In other words, an object is the device that supports encapsulation.

Within an object, code, data, or both may be private to that object or public. Private code or data is known to and accessible by only another part of the object. That is, private code or data cannot be accessed by a piece of the program that exists outside the object. When code or data is public, other parts of your program can access it even though it is defined within an object. Typically, the public parts of an object are used to provide a controlled interface to the private elements.

C#’s basic unit of encapsulation is the class. A class defines the form of an object. It specifies both the data and the code that will operate on that data. C# uses a class specification to construct objects. Objects are instances of a class. Thus, a class is essentially a set of plans that specify how to build an object.

Collectively, the code and data that constitute a class are called its members. The data defined by the class is referred to as fields. The terms member variables and instance variables also are used. The code that operates on that data is contained within function members, of which the most common is the method. Method is C#’s term for a subroutine. (Other function members include properties, events, and constructors.) Thus, the methods of a class contain code that acts on the fields defined by that class.

Polymorphism

Polymorphism (from the Greek, meaning “many forms”) is the quality that allows one interface to access a general class of actions. A simple example of polymorphism is found in the steering wheel of an automobile. The steering wheel (the interface) is the same no matter what type of actual steering mechanism is used. That is, the steering wheel works the same whether your car has manual steering, power steering, or rack-and-pinion steering. Thus, turning the steering wheel left causes the car to go left no matter what type of steering is used. The benefit of the uniform interface is, of course, that once you know how to operate the steering wheel, you can drive any type of car.

The same principle can also apply to programming. For example, consider a stack (which is a first-in, last-out list). You might have a program that requires three different types of stacks. One stack is used for integer values, one for floating-point values, and one for characters. In this case, the algorithm that implements each stack is the same, even though the data being stored differs. In a non-object-oriented language, you would be required to create three different sets of stack routines, with each set using different names. However, because of polymorphism, in C# you can create one general set of stack routines that works for all three specific situations. This way, once you know how to use one stack, you can use them all.

More generally, the concept of polymorphism is often expressed by the phrase “one interface, multiple methods.” This means that it is possible to design a single interface to a group of related activities. Polymorphism helps reduce complexity by allowing the same interface to be used to specify a general class of action. It is the compiler’s job to select the specific action (that is, method) as it applies to each situation. You, the programmer, don’t need to do this selection manually. You need only remember and utilize the general interface.

Inheritance

Inheritance is the process by which one object can acquire the properties of another object. This is important because it supports the concept of hierarchical classification. If you think about it, most knowledge is made manageable by hierarchical (that is, top-down) classifications. For example, a Red Delicious apple is part of the classification apple, which in turn is part of the fruit class, which is under the larger class food. That is, the food class possesses certain qualities (edible, nutritious, and so on) that also, logically, apply to its subclass, fruit. In addition to these qualities, the fruit class has specific characteristics (juicy, sweet, and so on) that distinguish it from other food. The apple class defines those qualities specific to an apple (grows on trees, not tropical, and so on). A Red Delicious apple would, in turn, inherit all the qualities of all preceding classes and would define only those qualities that make it unique.

Without the use of hierarchies, each object would have to explicitly define all of its characteristics. Using inheritance, an object need only define those qualities that make it unique within its class. It can inherit its general attributes from its parent. Thus, it is the inheritance mechanism that makes it possible for one object to be a specific instance of a more general case.




C# 2.0(c) The Complete Reference
C# 2.0: The Complete Reference (Complete Reference Series)
ISBN: 0072262095
EAN: 2147483647
Year: 2006
Pages: 300

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net