Devices and Sensors

Devices and Sensors

Devices

Devices are changing forms and functionality as manufacturers attempt to increase their usability and functionality for various enterprise and consumer scenarios. Smartphones, the combined cellular phone and PDA devices, are just one example. Devices such as Nokia's 9290 Communicator are fully integrated mobile terminals running the Symbian operating system that combines phone, fax, email, calendar, and imaging functionality into a single device. Kyocera's QCP 6035 smartphone combines a CDMA digital wireless phone with a Palm OS handheld computer. Ericsson's R380 is another example of a smartphone having PDA functionality and running on GSM networks. For the business user, the smartphone may well enable the enterprise to standardize on fewer devices for their corporate users. Fewer devices translates into reduced purchase and support costs and increased productivity for employees.

Beyond the cell phone and PDA combination, companies such as Samsung have introduced concept phones, including watch phones, camera phones, and TV phones. Multimedia messaging using the Multimedia Messaging Service (MMS) standard is being used to transform cell phones into communications devices that can exchange audio, images, and other forms of rich content. Companies such as Nokia already have MMS-enabled phones such as the 7650 with a built-in digital camera that are in use on live networks in Europe.

Wearable devices are a future trend as mobile devices morph into the ultimate in mobility by becoming wearable as gloves, headsets, and so forth. Wearable devices benefit the end user by being located at the point of activity without interfering with the activity at hand. They can provide improved interactivity and flexibility over the traditional mobile devices or the traditional keyboard and monitor. Essentially, they provide the advantages of automation without the disadvantage of the process change to accommodate the technology.

Manufacturers are also experimenting with how all these devices such as phones, watches, and cameras may eventually connect into the wireless network. As the number of devices per user proliferates, each device with its own built-in wireless networking capabilities becomes a redundant and costly proposition for end users. A potential new solution is to have a networking device that is separate from the end devices themselves. In this way, devices can become smaller, more functional, more fashionable in the case of consumer-oriented brands, and less costly. The networking device performs the required wireless connectivity on their behalf. The end devices simply communicate with this networking device via short-range wireless protocols such as Bluetooth. An example of a software company providing this type of solution is IXI Mobile. The company offers a personal mobile gateway (PMG) that acts as a bridge between the devices and the wireless network. The PMG can be a standalone device or can be incorporated into a battery pack or existing cellular phones. The interesting theme here is that this concept separates the communications requirements from the form and functional requirements of the devices themselves. It therefore allows devices to be manufactured with lower costs and a faster time to market and serves as the gateway between the short-range personal area network and the wide area network provided by the wireless carriers.

One of the challenges with portable devices has always been battery life. As portable devices such as handheld personal computers, cell phones, and personal digital assistants gain ever more functionality, they also become an increasing drain on battery power. Fuel cells are an emerging technology that provides much longer life than traditional lithium-ion batteries. They can last three to five times longer and are more environmentally friendly. Fuel cells are electrochemical devices that run on hydrogen, methanol, propane, butane, or other similar sources by converting chemical energy into electrical energy with by-products of water and carbon dioxide. One of the companies manufacturing fuel cells is Smart Fuel Cell GmbH, based in Munich. The company targets devices such as notebooks, camcorders and power tools and began pilot production and field trials with industry partners in early 2002.

Sensors

RFID chips were discussed in the chapter on mobile business. Beyond RFID chips are a wide array of other intelligent sensors. These sensors are capable of detecting changes in the physical environment such as temperature and pressure, and even detecting chemical particles. When sensors are deployed in a net of 10s, 100s, or 1,000s, they can provide us with valuable information about our environment, and activities and changes occurring within that environment over time. These types of sensors and their corresponding detection events can be applied for environmental monitoring and protection, transportation, medicine, and even homeland security. They can help to detect microlevel changes that often escape the human eye, but which can signal broader macroscale impacts. In essence, these sensors help us to connect the physical environment to the virtual computing network of people and applications. By adding the physical element, we are creating a more accurate picture of our business world within the digital world and are able to make more informed decisions from a greater range of input parameters. The addition of sensors providing input parameters to business systems can help us to extend our virtual radar in the e-business world and to react more swiftly to threats and opportunities that would have previously passed unnoticed. Sensors can provide continual information on business events that help to add a historical perspective on how objects and environmental factors have varied in terms of location and core attributes over time. This contributes substantially to an improved understanding of "context" for both business applications and scientific applications.

 



Business Innovation and Disruptive Technology. Harnessing the Power of Breakthrough Technology. for Competitive Advantage
Business Innovation and Disruptive Technology: Harnessing the Power of Breakthrough Technology ...for Competitive Advantage
ISBN: 0130473979
EAN: 2147483647
Year: 2002
Pages: 81

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net