Behavior Unconnected to Physical Forces


Having just left the industrial age behind, we are standing at the threshold of the information age with an obsolete set of tools. In the industrial age, engineers were able to solve each new problem placed before them. Working in steel and concrete, they made bridges, cars, skyscrapers, and moon rockets that worked well and satisfied their human users. As we tiptoe into the information age, we are working increasingly in software, and we have once again brought our best engineers to the task. But unlike in the past, things haven't turned out so well. The computer boxes are fast and powerful, and the programs are generally reliable, but we have encountered a previously unseen dimension of frustrated, dissatisfied, unhappy, and unproductive users.

Today's engineers are no less capable than ever, so I must deduce from this that, for the first time, they have encountered a problem qualitatively different from any they confronted in the industrial age. Otherwise, their old tools would work as well as they ever did. For lack of a better term, I have labeled this new problem substance cognitive friction. It is the resistance encountered by a human intellect when it engages with a complex system of rules that change as the problem changes. Software interaction is very high in cognitive friction. Interaction with physical devices, however complex, tends to be low in cognitive friction because mechanical devices tend to stay in a narrow range of states comparable to their inputs.

Playing a violin is extremely difficult but low in cognitive friction because although a violinist manipulates it in very complex and sophisticated ways the violin never enters a "meta" state in which various inputs make it sound like a tuba or a bell. The violin's behavior is always predictable though complex and obeys physical laws, even while being quite difficult to control. In contrast, a microwave oven has a lot of cognitive friction, because the 10 number keys on the control panel can be put into one of two contexts, or modes. In one mode they control the intensity of the radiation, and in the other they control the duration. This dramatic change, along with the lack of sensory feedback about the oven's changed state, results in high cognitive friction.

The QWERTY keys on a typewriter, for example, don't have metafunctions. When you press the E key, the letter E appears on the page. When you press the key sequence ERASE ALL, the words ERASE ALL appear on the paper. On a computer depending on the context you may also get a metafunction. A higher-level operation occurs, and the computer actually erases things. The behavior of the machine no longer has a one-to-one correspondence to your manipulation.

Cognitive friction like friction in the physical world is not necessarily a bad thing in small quantities, but as it builds up, its negative effects grow exponentially. Of course, friction is a physical force and can be detected and measured, whereas cognitive friction is a forensic tool and cannot be taken literally. Don't forget, though, that such things as love, ambition, courage, fear, and truth though real cannot be detected and measured. They can't be addressed by engineering methods, either.

The skilled engineers who manufacture microwave ovens typically consult with human-factors experts to design the buttons so they are easy to see and press. But the human-factors experts are merely adapting the buttons to the user's eyes and fingers, not to their minds. Consequently, microwave ovens don't have much "friction" but have a lot of cognitive friction. It is easy to open and close the door and physically press the buttons but, compared to the simplicity of the task, setting the controls to achieve your goals is very difficult. Getting the microwave to perform the work you intend for it is quite difficult, though our general familiarity with it makes us forget how hard it really is. How many of us have cooked something for one second or one hour instead of for one minute? How many of us have cooked something at a strength of 5 for 10 minutes instead of a strength of 10 for 5 minutes?

On the computer screen, everything is filled with cognitive friction. Even an interface as simple as the World Wide Web presents the user with a more intense mental engagement than any physical machine. This happens because the meaning of each blue hyperlink is a doorway to some other place on the Web. All you can do is click on a hyperlink, but what the link points to can change independently of the pointer without any outward indication. Its sole function is pure metafunction. The very "hyper"ness is what gives it cognitive friction.



Inmates Are Running the Asylum, The. Why High-Tech Products Drive Us Crazy and How to Restore the Sanity
The Inmates Are Running the Asylum Why High Tech Products Drive Us Crazy &How to Restore the Sanity - 2004 publication
ISBN: B0036HJY9M
EAN: N/A
Year: 2003
Pages: 170

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net