Subdivision Surface Modifiers


The Modifiers menu also includes a submenu of modifiers for subdividing surfaces. These include the MeshSmooth and HSDS Modifiers. You can use these modifiers to smooth and subdivide the surface of an object. Subdividing a surface increases the resolution of the object, allowing for more detailed modeling.

MeshSmooth modifier

The MeshSmooth modifier smoothes the entire surface of an object by applying a chamfer function to both vertices and edges at the same time. This modifier has the greatest effect on sharp corners and edges. With this modifier, you can create a NURMS object. NURMS stands for Non-Uniform Rational MeshSmooth. NURMS can weight each control point. The Parameters rollout includes three MeshSmooth types: Classic, NURMS, and Quad Output. You can set it to operate on triangular or polygonal faces. Smoothing parameters include Strength and Relax values.

Settings for the number of Subdivision Iterations to run and controls for weighting selected control points are also available. Update Options can be set to Always, When Rendering, and Manually using the Update button. You can also select and work with either Vertex or Edge subobjects. These subobjects give you local control over the MeshSmooth object. Included within the Local Control rollout is a Crease value, which is available in Edge subobject mode. Selecting an Edge subobject and applying a 1.0 value causes a hard edge to be retained while the rest of the object is smoothed. The MeshSmooth modifier also makes the Soft Selection rollout available. The Reset rollout is included to quickly reset any crease and weight values.

TurboSmooth modifier

The TurboSmooth modifier works just like the MeshSmooth modifier, except that it is much faster and doesn't require as much memory.

Tutorial: Smoothing a birdbath

One effective way to model is to block out the details of a model using the Editable Poly features and then smooth the resulting model using the TurboSmooth modifier. This gives the model a polished look and increases the resolution.

To create a smoothed birdbath object, follow these steps:

  1. Open the image from book Birdbath.max file from the Chap 16 directory on the DVD.

    This file includes a simple birdbath created by selecting and scaling rows of cylinder vertices. The water is simply an inverted cone.

  2. Select and clone the existing birdbath by pressing the Shift key and moving the birdbath.

  3. Select the cloned birdbath, and apply the TurboSmooth modifier with the Modifiers image from book Subdivision Surfaces image from book TurboSmooth menu.

  4. In the TurboSmooth rollout, set the Iterations value to 2.

    Notice that the entire birdbath is smooth and the resolution is greatly increased, as shown in Figure 16-13.

image from book
Figure 16.13: The TurboSmooth modifier can make a model flow better

HSDS modifier

You use the HSDS (Hierarchical SubDivision Surfaces) modifier to increase the resolution and smoothing of a localized area. It works like the Tessellate modifier, except that it can work with small subobject sections instead of the entire object surface. The HSDS modifier lets you work with Vertex, Edge, Polygon, and Element subobjects. After a subobject area is selected, you can click the Subdivide button to subdivide the area. Each time you press the Subdivide button, the selected subobjects are subdivided again, and each subdivision level appears in the list above the Subdivide button.

Using the subdivision list, you can move back and forth between the various subdivision hierarchy levels. When edges are selected, you can specify a Crease value to maintain sharp edges. In the Advanced Options rollout, you can select to Smooth Result, Hide, or Delete Polygon. The Adaptive Subdivision button opens the Adaptive Subdivision dialog box, in which you can specify the detail parameters. This modifier also includes a Soft Selection rollout.




3ds Max 9 Bible
3ds Max 9 Bible
ISBN: 0470100893
EAN: 2147483647
Year: 2007
Pages: 383

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net