Intel Pentium 4 (Seventh-Generation) Processors


The Pentium 4 was introduced in November 2000 and represented a new generation in processors (see Figure 3.60). If this one had a number instead of a name, it might be called the 786 because it represents a generation beyond the previous 686 class processors. Three main variations on the Pentium 4 have been released, based on the processor die and architecture. They are called the Willamette, Northwood, and Prescott. The processor dies are shown in Figure 3.61.

Figure 3.60. Pentium 4 FC-PGA2 processor.


Figure 3.61. The CPU dies for the Pentium 4 CPU based on the Willamette, Northwood, and Prescott cores.


The main technical details for the Pentium 4 include

  • Speeds range from 1.3GHz to 3.8GHz.

  • 42 million transistors, 0.18-micron process, 217 sq. mm die (Willamette).

  • 55 million transistors, 0.13-micron process, 131 sq. mm die (Northwood).

  • 125 million transistors, 0.09-micron process, 112 sq. mm die (Prescott).

  • Software compatible with previous Intel 32-bit processors.

  • Some Prescott versions support EM64T (64-bit extensions) and Execute Disable Bit (buffer overflow protection).

  • Processor (front-side) bus runs at 400MHz, 533MHz, 800MHz, or 1066MHz.

  • Arithmetic logic units (ALUs) run at twice the processor core frequency.

  • Hyper-pipelined (20-stage or 31-stage) technology.

  • Hyper-threading technology support in all 2.4GHz and faster processors running an 800MHz bus and all 3.06GHz and faster processors running a 533MHz bus.

  • Very deep out-of-order instruction execution.

  • Enhanced branch prediction.

  • 8KB or 16KB L1 cache plus 12K micro-op execution trace cache.

  • 256KB, 512KB, or 1MB of on-die, full-core speed 256-bit-wide L2 cache with eight-way associativity.

  • L2 cache can handle up to 4GB RAM and supports ECC.

  • 2MB of on-die, full-speed L3 cache (Extreme Edition).

  • SSE2SSE plus 144 new instructions for graphics and sound processing (Willamette and Northwood).

  • SSE3SSE2 plus 13 new instructions for graphics and sound processing (Prescott).

  • Enhanced floating-point unit.

  • Multiple low-power states.

See "IA-32e 64-Bit Extension Mode (AMD64, x86-64, EM64T)," p. 50.

Intel abandoned Roman numerals for a standard Arabic numeral 4 designation to identify the Pentium 4. Internally, the Pentium 4 introduces a new architecture Intel calls NetBurst microarchitecture, which is a marketing term and not a technical term. Intel uses NetBurst to describe hyper-pipelined technology, a rapid execution engine, a high-speed (400MHz, 533MHz, 800MHz, or 1066MHz) system bus, and an execution trace cache. The hyper-pipelined technology doubles or triples the instruction pipeline depth as compared to the Pentium III (or Athlon/Athlon 64), meaning more and smaller steps are required to execute instructions. Even though this might seem less efficient, it enables much higher clock speeds to be more easily attained. The rapid execution engine enables the two integer arithmetic logic units (ALUs) to run at twice the processor core frequency, which means instructions can execute in half a clock cycle. The 400MHz/533MHz/800MHz/1066MHz system bus is a quad-pumped bus running off a 100MHz/133MHz/200MHz/266MHz system clock transferring data four times per clock cycle. The execution trace cache is a high-performance Level 1 cache that stores approximately 12K decoded micro-operations. This removes the instruction decoder from the main execution pipeline, increasing performance.

Of these, the high-speed processor bus is most notable. Technically speaking, the processor bus is a 100MHz, 133MHz, 200MHz, or 266MHz quad-pumped bus that transfers four times per cycle (4x), for a 400MHz, 533MHz, 800MHz, or 1066MHz effective rate. Because the bus is 64 bits (8 bytes) wide, this results in a throughput rate of 3200MBps, 4266MBps, 6400MBps, or 8532MBps.

Table 3.44 shows how this transfer rate compares to various speeds of dual-channel RDRAM and DDR SDRAM.

As you can see from Table 3.46, the throughput of the Pentium 4's processor bus is an exact match for the most common types of RDRAM and DDR SDRAM memory. The use of dual-channel memory means that modules must be added in matched pairs. Dual banks of PC1600 (DDR266), PC2100 (DDR333), or PC3200 (DDR400) DDR SDRAM are less expensive than equivalent RDRAM solutions, which is why virtually all newer Pentium 4 chipsets support DDR SDRAM or the newer DDR2 SDRAM.

In the Pentium 4's 20-stage or 31-stage pipelined internal architecture, individual instructions are broken down into many more substages than with previous processors such as the Pentium III, making this almost like a RISC processor. Unfortunately, this can add to the number of cycles taken to execute instructions if they are not optimized for this processor. Early benchmarks running existing software showed that existing Pentium III or AMD Athlon processors could easily keep pace with or even exceed the Pentium 4 in specific tasks; however, this is changing now that applications are being recompiled to work smoothly with the Pentium 4's deep pipelined architecture.

Another important architectural advantage is hyper-threading technology, which can be found in all Pentium 4 2.4GHz and faster processors running an 800MHz bus and all 3.06GHz and faster processors running a 533MHz bus. Hyper-threading enables a single processor to run two threads simultaneously, thereby acting as if it were two processors instead of one. For more information on hyper-threading technology, see the section "Hyper-Threading Technology," earlier in this chapter.

The Pentium 4 initially used Socket 423, which has 423 pins in a 39x39 SPGA arrangement. Later versions used Socket 478; recent versions use Socket T (LGA775), which has additional pins to support new features such as EM64T (64-bit extensions), Execute Disable Bit (protection against buffer overflow attacks), Intel Virtualization Technology, and other advanced features. The Celeron was never designed to work in Socket 423, but Celeron and Celeron D versions are available for Socket 478 and Socket T (LGA775), allowing for lower-cost systems compatible with the Pentium 4. Voltage selection is made via an automatic voltage regulator module installed on the motherboard and wired to the socket.

Use Table 3.47 as a comprehensive guide to Pentium 4 processor features. As you review the many Pentium 4 models listed in this table, you can easily see that there have actually been at least six distinct Pentium 4 generations, based on the most significant technology changes listed here:

  • Socket 423

  • Socket 478

  • Socket 478 Hyper-Threading Technology

  • Socket 478 Extreme Edition (L3 cache)

  • Socket T (LGA775)

  • Socket 775 EM64T (64-bit extensions)

Table 3.47. Pentium 4 Processor Information

CPU Speed (GHz)

Bus Speed (MHz)

Bus Speed (GBps)

HT Support

Boxed S-spec

OEM S-spec

Stepping

CPUID

L2 Cache

L3 Cache

Max. Temp

Max. Power

Socket

Process

Transistors

Proessor Model Number, Notes

1.30

400

3.2

No

SL4QD

SL4SF

B2

0F07h

256K

0K

69°C

48.9W

423

180nm

42M

N/A

1.30

400

3.2

No

SL4SF

SL4SF

B2

0F07h

256K

0K

69°C

48.9W

423

180nm

42M

N/A

1.30

400

3.2

No

SL5GC

SL5FW

C1

0F0Ah

256K

0K

70°C

51.6W

423

180nm

42M

N/A

1.40

400

3.2

No

SL4SC

SL4SG

B2

0F07h

256K

0K

70°C

51.8W

423

180nm

42M

N/A

1.40

400

3.2

No

SL4SG

SL4SG

B2

0F07h

256K

0K

70°C

51.8W

423

180nm

42M

N/A

1.40

400

3.2

No

SL4X2

SL4WS

C1

0F0Ah

256K

0K

72°C

54.7W

423

180nm

42M

N/A

1.40

400

3.2

No

SL5N7

SL59U

C1

0F0Ah

256K

0K

72°C

55.3W

478

180nm

42M

N/A

1.40

400

3.2

No

SL59U

SL59U

C1

0F0Ah

256K

0K

72°C

55.3W

478

180nm

42M

N/A

1.40

400

3.2

No

SL5UE

SL5TG

D0

0F12h

256K

0K

72°C

55.3W

478

180nm

42M

N/A

1.40

400

3.2

No

SL5TG

SL5TG

D0

0F12h

256K

0K

72°C

55.3W

478

180nm

42M

N/A

1.50

400

3.2

No

SL4TY

SL4SH

B2

0F07h

256K

0K

72°C

54.7W

423

180nm

42M

N/A

1.50

400

3.2

No

SL4SH

SL4SH

B2

0F07h

256K

0K

72°C

54.7W

423

180nm

42M

N/A

1.50

400

3.2

No

SL4X3

SL4WT

C1

0F0Ah

256K

0K

73°C

57.8W

423

180nm

42M

N/A

1.50

400

3.2

No

SL4WT

SL4WT

C1

0F0Ah

256K

0K

73°C

57.8W

423

180nm

42M

N/A

1.50

400

3.2

No

SL5TN

SL5SX

D0

0F12h

256K

0K

73°C

57.8W

423

180nm

42M

N/A

1.50

400

3.2

No

SL5N8

SL59V

C1

0F0Ah

256K

0K

73°C

57.9W

478

180nm

42M

N/A

1.50

400

3.2

No

SL5UF

SL5TJ

D0

0F12h

256K

0K

73°C

57.9W

478

180nm

42M

N/A

1.50

400

3.2

No

SL5TJ

SL5TJ

D0

0F12h

256K

0K

73°C

57.9W

478

180nm

42M

N/A

1.50

400

3.2

No

SL62Y

SL62Y

D0

0F12h

256K

0K

71°C

62.9W

478

180nm

42M

N/A

1.60

400

3.2

No

SL4X4

SL4WU

C1

0F0Ah

256K

0K

75°C

61.0W

423

180nm

42M

N/A

1.60

400

3.2

No

SL5UL

SL5VL

D0

0F12h

256K

0K

75°C

61.0W

423

180nm

42M

N/A

1.60

400

3.2

No

SL5VL

SL5VL

D0

0F12h

256K

0K

75°C

61.0W

423

180nm

42M

N/A

1.60

400

3.2

No

SL5UW

SL5US

C1

0F0Ah

256K

0K

75°C

60.8W

478

180nm

42M

N/A

1.60

400

3.2

No

SL5UJ

SL5VH

D0

0F12h

256K

0K

75°C

60.8W

478

180nm

42M

N/A

1.60

400

3.2

No

SL5VH

SL5VH

D0

0F12h

256K

0K

75°C

60.8W

478

180nm

42M

N/A

1.60

400

3.2

No

SL6BC

SL679

E0

0F13h

256K

0K

75°C

60.8W

478

180nm

42M

N/A

1.60

400

3.2

No

SL679

SL679

E0

0F13h

256K

0K

75°C

60.8W

478

180nm

42M

N/A

1.60A

400

3.2

No

SL668

SL668

B0

0F24h

512K

0K

66°C

46.8W

478

130nm

55M

N/A

1.70

400

3.2

No

SL57V

SL57W

C1

0F0Ah

256K

0K

76°C

64.0W

423

180nm

42M

N/A

1.70

400

3.2

No

SL57W

SL57W

C1

0F0Ah

256K

0K

76°C

64.0W

423

180nm

42M

N/A

1.70

400

3.2

No

SL5TP

SL5SY

D0

0F12h

256K

0K

76°C

64.0W

423

180nm

42M

N/A

1.70

400

3.2

No

SL5N9

SL59X

C1

0F0Ah

256K

0K

76°C

63.5W

478

180nm

42M

N/A

1.70

400

3.2

No

SL5UG

SL5TK

D0

0F12h

256K

0K

76°C

63.5W

478

180nm

42M

N/A

1.70

400

3.2

No

SL5TK

SL5TK

D0

0F12h

256K

0K

76°C

63.5W

478

180nm

42M

N/A

1.70

400

3.2

No

SL62Z

SL62Z

D0

0F12h

256K

0K

73°C

67.7W

478

180nm

42M

N/A

1.70

400

3.2

No

SL6BD

SL67A

E0

0F13h

256K

0K

73°C

67.7W

478

180nm

42M

N/A

1.70

400

3.2

No

SL67A

SL67A

E0

0F13h

256K

0K

73°C

67.7W

478

180nm

42M

N/A

1.80

400

3.2

No

SL4X5

SL4WV

C1

0F0Ah

256K

0K

78°C

66.7W

423

180nm

42M

N/A

1.80

400

3.2

No

SL5UM

SL5VM

D0

0F12h

256K

0K

78°C

66.7W

423

180nm

42M

N/A

1.80

400

3.2

No

SL5VM

SL5VM

D0

0F12h

256K

0K

78°C

66.7W

423

180nm

42M

N/A

1.80

400

3.2

No

SL5UV

SL5UT

C1

0F0Ah

256K

0K

77°C

66.1W

478

180nm

42M

N/A

1.80

400

3.2

No

SL5UK

SL5VJ

D0

0F12h

256K

0K

77°C

66.1W

478

180nm

42M

N/A

1.80

400

3.2

No

SL5VJ

SL5VJ

D0

0F12h

256K

0K

77°C

66.1W

478

180nm

42M

N/A

1.80

400

3.2

No

SL6BE

SL67B

E0

0F13h

256K

0K

77°C

66.1W

478

180nm

42M

N/A

1.80

400

3.2

No

SL67B

SL67B

E0

0F13h

256K

0K

77°C

66.1W

478

180nm

42M

N/A

1.80A

400

3.2

No

SL63X

SL62P

B0

0F24h

512K

0K

67°C

49.6W

478

130nm

55M

N/A

1.80A

400

3.2

No

SL62P

SL62P

B0

0F24h

512K

0K

67°C

49.6W

478

130nm

55M

N/A

1.80A

400

3.2

No

SL68Q

SL66Q

B0

0F24h

512K

0K

67°C

49.6W

478

130nm

55M

N/A

1.80A

400

3.2

No

SL66Q

SL66Q

B0

0F24h

512K

0K

67°C

49.6W

478

130nm

55M

N/A

1.90

400

3.2

No

SL5WH

SL5VN

D0

0F12h

256K

0K

73°C

69.2W

423

180nm

42M

N/A

1.90

400

3.2

No

SL5VN

SL5VN

D0

0F12h

256K

0K

73°C

69.2W

423

180nm

42M

N/A

1.90

400

3.2

No

SL5WG

SL5VK

D0

0F12h

256K

0K

75°C

72.8W

478

180nm

42M

N/A

1.90

400

3.2

No

SL5VK

SL5VK

D0

0F12h

256K

0K

75°C

72.8W

478

180nm

42M

N/A

1.90

400

3.2

No

SL6BF

SL67C

E0

0F13h

256K

0K

75°C

72.8W

478

180nm

42M

N/A

1.90

400

3.2

No

SL67C

SL67C

E0

0F13h

256K

0K

75°C

72.8W

478

180nm

42M

N/A

2.0

400

3.2

No

SL5TQ

SL5SZ

D0

0F12h

256K

0K

74°C

71.8W

423

180nm

42M

N/A

2.0

400

3.2

No

SL5UH

SL5TL

D0

0F12h

256K

0K

76°C

75.3W

478

180nm

42M

N/A

2.0

400

3.2

No

SL5TL

SL5TL

D0

0F12h

256K

0K

76°C

75.3W

478

180nm

42M

N/A

2.0A

400

3.2

No

SL5ZT

SL5YR

B0

0F24h

512K

0K

68°C

52.4W

478

130nm

55M

N/A

2.0A

400

3.2

No

SL5YR

SL5YR

B0

0F24h

512K

0K

68°C

52.4W

478

130nm

55M

N/A

2.0A

400

3.2

No

SL68R

SL66R

B0

0F24h

512K

0K

68°C

52.4W

478

130nm

55M

N/A

2.0A

400

3.2

No

SL66R

SL66R

B0

0F24h

512K

0K

68°C

52.4W

478

130nm

55M

N/A

2.0A

400

3.2

No

SL6E7

SL6GQ

C1

0F27h

512K

0K

69°C

54.3W

478

130nm

55M

N/A

2.0A

400

3.2

No

SL6GQ

SL6GQ

C1

0F27h

512K

0K

69°C

54.3W

478

130nm

55M

N/A

2.0A

400

3.2

No

SL6QM

SL6PK

D1

0F29h

512K

0K

74°C

54.3W

478

130nm

55M

N/A

2.20

400

3.2

No

SL5ZU

SL5YS

B0

0F24h

512K

0K

69°C

55.1W

478

130nm

55M

N/A

2.20

400

3.2

No

SL5YS

SL5YS

B0

0F24h

512K

0K

69°C

55.1W

478

130nm

55M

N/A

2.20

400

3.2

No

SL68S

SL66S

B0

0F24h

512K

0K

69°C

55.1W

478

130nm

55M

N/A

2.20

400

3.2

No

SL66S

SL66S

B0

0F24h

512K

0K

69°C

55.1W

478

130nm

55M

N/A

2.20

400

3.2

No

SL6E8

SL6GR

C1

0F27h

512K

0K

70°C

57.1W

478

130nm

55M

N/A

2.20

400

3.2

No

SL6GR

SL6GR

C1

0F27h

512K

0K

70°C

57.1W

478

130nm

55M

N/A

2.20

400

3.2

No

SL6QN

SL6PL

D1

0F29h

512K

0K

70°C

57.1W

478

130nm

55M

N/A

2.26

533

4.3

No

SL683

SL67Y

B0

0F24h

512K

0K

70°C

56.0W

478

130nm

55M

N/A

2.26

533

4.3

No

SL67Y

SL67Y

B0

0F24h

512K

0K

70°C

56.0W

478

130nm

55M

N/A

2.26

533

4.3

No

SL6ET

SL6D6

B0

0F24h

512K

0K

70°C

56.0W

478

130nm

55M

N/A

2.26

533

4.3

No

SL6EE

SL6DU

C1

0F27h

512K

0K

70°C

58.0W

478

130nm

55M

N/A

2.26

533

4.3

No

SL6DU

SL6DU

C1

0F27h

512K

0K

70°C

58.0W

478

130nm

55M

N/A

2.26

533

4.3

No

SL6Q7

SL6PB

D1

0F29h

512K

0K

70°C

58.0W

478

130nm

55M

N/A

2.40

400

3.2

No

SL67R

SL65R

B0

0F24h

512K

0K

70°C

57.8W

478

130nm

55M

N/A

2.40

400

3.2

No

SL65R

SL65R

B0

0F24h

512K

0K

70°C

57.8W

478

130nm

55M

N/A

2.40

400

3.2

No

SL68T

SL66T

B0

0F24h

512K

0K

70°C

57.8W

478

130nm

55M

N/A

2.40

400

3.2

No

SL66T

SL66T

B0

0F24h

512K

0K

70°C

57.8W

478

130nm

55M

N/A

2.40

400

3.2

No

SL6E9

SL6GS

C1

0F27h

512K

0K

71°C

59.8W

478

130nm

55M

N/A

2.40

400

3.2

No

SL6GS

SL6GS

C1

0F27h

512K

0K

71°C

59.8W

478

130nm

55M

N/A

2.40A

533

4.3

No

SL7E8

SL7E8

C0

0F33h

1M

0K

69°C

89.0W

478

90nm

125M

N/A

2.40B

533

4.3

No

SL684

SL67Z

B0

0F24h

512K

0K

70°C

57.8W

478

130nm

55M

N/A

2.40B

533

4.3

No

SL67Z

SL67Z

B0

0F24h

512K

0K

70°C

57.8W

478

130nm

55M

N/A

2.40B

533

4.3

No

SL6EU

SL6D7

B0

0F24h

512K

0K

70°C

57.8W

478

130nm

55M

N/A

2.40B

533

4.3

No

SL6EF

SL6DV

C1

0F27h

512K

0K

71°C

59.8W

478

130nm

55M

N/A

2.40B

533

4.3

No

SL6DV

SL6DV

C1

0F27h

512K

0K

71°C

59.8W

478

130nm

55M

N/A

2.40B

533

4.3

No

SL6QP

SL6PM

D1

0F29h

512K

0K

74°C

66.2W

478

130nm

55M

N/A

2.40C

800

6.4

Yes

SL6WR

SL6WF

D1

0F29h

512K

0K

74°C

66.2W

478

130nm

55M

N/A

2.40C

800

6.4

Yes

SL6Z3

SL6Z3

M0

0F25h

512K

0K

72°C

74.5W

478

130nm

55M

N/A

2.50

400

3.2

No

SL6EB

SL6GT

C1

0F27h

512K

0K

72°C

61.0W

478

130nm

55M

N/A

2.50

400

3.2

No

SL6GT

SL6GT

C1

0F27h

512K

0K

72°C

61.0W

478

130nm

55M

N/A

2.50

400

3.2

No

SL6QQ

SL6QQ

D1

0F29h

512K

0K

72°C

61.0W

478

130nm

55M

N/A

2.53

533

4.3

No

SL685

SL682

B0

0F24h

512K

0K

71°C

59.3W

478

130nm

55M

N/A

2.53

533

4.3

No

SL682

SL682

B0

0F24h

512K

0K

71°C

59.3W

478

130nm

55M

N/A

2.53

533

4.3

No

SL6EV

SL6D8

B0

0F24h

512K

0K

71°C

59.3W

478

130nm

55M

N/A

2.53

533

4.3

No

SL6EG

SL6DW

C1

0F27h

512K

0K

72°C

61.5W

478

130nm

55M

N/A

2.53

533

4.3

No

SL6DW

SL6DW

C1

0F27h

512K

0K

72°C

61.5W

478

130nm

55M

N/A

2.53

533

4.3

No

SL6Q9

SL6PD

D1

0F29h

512K

0K

72°C

61.5W

478

130nm

55M

N/A

2.60

400

3.2

No

SL6HB

SL6GU

C1

0F27h

512K

0K

72°C

62.6W

478

130nm

55M

N/A

2.60

400

3.2

No

SL6GU

SL6GU

C1

0F27h

512K

0K

72°C

62.6W

478

130nm

55M

N/A

2.60

400

3.2

No

SL6QR

SL6QR

D1

0F29h

512K

0K

75°C

69.0W

478

130nm

55M

N/A

2.60B

533

4.3

No

SL6S3

SL6S3

C1

0F27h

512K

0K

74°C

66.1W

478

130nm

55M

N/A

2.60B

533

4.3

No

SL6QA

SL6PE

D1

0F29h

512K

0K

74°C

66.1W

478

130nm

55M

N/A

2.60C

800

6.4

Yes

SL6WS

SL6WH

D1

0F29h

512K

0K

74°C

66.1W

478

130nm

55M

N/A

2.60C

800

6.4

Yes

SL78X

N/A

D1

0F29h

512K

0K

74°C

66.1W

478

130nm

55M

N/A

2.66

533

4.3

No

SL6DX

SL6DX

C1

0F27h

512K

0K

73°C

66.1W

478

130nm

55M

N/A

2.66

533

4.3

No

SL6EH

N/A

C1

0F27h

512K

0K

73°C

66.1W

478

130nm

55M

N/A

2.66

533

4.3

No

SL6S3

SL6S3

C1

0F27h

512K

0K

74°C

66.1W

478

130nm

55M

N/A

2.66

533

4.3

No

SL6SK

N/A

C1

0F27h

512K

0K

74°C

66.1W

478

130nm

55M

N/A

2.66

533

4.3

No

SL6PE

SL6PE

D1

0F29h

512K

0K

74°C

66.1W

478

130nm

55M

N/A

2.66

533

4.3

No

SL6QA

N/A

D1

0F29h

512K

0K

74°C

66.1W

478

130nm

55M

N/A

2.66

533

4.3

No

SL7E9

N/A

C0

0F33h

1M

0K

73.1°C

103W

478

90nm

125M

N/A

2.66

533

4.3

No

SL7YU

N/A

D0

0f34h

1M

0K

69.1°C

84W

775

90nm

125M

505

2.66

533

4.3

No

SL85U

N/A

E0

0F41H

1M

0K

67.7°C

84W

775

90nm

125M

505

2.80

400

3.2

No

N/A

SL7EY

D1

0F29h

512K

0K

75°C

68.4W

478

130nm

55M

N/A

2.80

533

4.3

No

SL6K6

SL6HL

C1

0F27h

512K

0K

75°C

68.4W

478

130nm

55M

N/A

2.80

533

4.3

No

SL6HL

SL6HL

C1

0F27h

512K

0K

75°C

68.4W

478

130nm

55M

N/A

2.80

533

4.3

No

SL6SL

SL6S4

C1

0F27h

512K

0K

75°C

68.4W

478

130nm

55M

N/A

2.80

533

4.3

No

SL6S4

SL6S4

C1

0F27h

512K

0K

75°C

68.4W

478

130nm

55M

N/A

2.80

533

4.3

No

SL6QB

SL6PF

D1

0F29h

512K

0K

75°C

69.7W

478

130nm

55M

N/A

2.80

533

4.3

No

SL7PK

E0

0F41h

 

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

2.80

533

4.3

No

SL88G

SL88G

E0

0F41h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

2.80

800

6.4

Yes

SL6WJ

SL6WJ

D1

0F29h

512K

0K

75°C

69.7W

478

130nm

55M

N/A

2.80

800

6.4

Yes

SL6WT

SL6WT

D1

0F29h

512K

0K

75°C

69.7W

478

130nm

55M

N/A

2.80

800

6.4

Yes

SL6Z5

N/A

M0

0F25h

512K

0K

73°C

76.0W

478

130nm

55M

N/A

2.80

800

6.4

Yes

SL7E2

SL7E2

D0

0f34h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

2.80

800

6.4

Yes

SL7E3

SL7E3

D0

0f34h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

2.80

800

6.4

Yes

N/A

SL7J5

D0

0f34h

1M

0K

67.7°C

84.0W

775

90nm

125M

520

2.80

800

6.4

Yes

SL7KA

SL7KA

D0

0f34h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

2.80

800

6.4

Yes

N/A

SL7J5

D0

0f34h

1M

0K

67.7°C

84.0W

775

90nm

125M

520

2.80

800

6.4

Yes

N/A

SL7PL

E0

0F41h

1M

0K

69.1°C

89.0W

775

90nm

125M

N/A

2.80

800

6.4

No

N/A

SL7PT

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

505

2.80

800

6.4

Yes

N/A

SL88H

E0

0F41h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

2.80

800

6.4

Yes

SL8HX

SL8HX

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

521[2]

2.80A

533

4.3

No

SL7K9

SL7K9

D0

0f34h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

2.80A

533

4.3

No

SL7D8

SL7D8

C0

0F33h

1M

0K

69°C

89.0W

478

90nm

125M

N/A

2.80C

800

6.4

Yes

SL78Y

N/A

D1

0F29h

512K

0K

75°C

69.7W

478

130nm

55M

N/A

2.80E

800

6.4

Yes

SL79K

SL79K

C0

0F33h

1M

0K

69°C

89.0W

478

90nm

125M

N/A

2.93

533

6.4

No

N/A

SL7YV

D0

0f34h

1M

0K

67.7°C

84.0W

775

90nm

125M

515

2.93

533

6.4

No

N/A

SL85V

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

515

3.0

800

6.4

Yes

SL6WU

SL6WK

D1

0F29h

512K

0K

70°C

81.9W

478

130nm

55M

N/A

3.0

800

6.4

Yes

SL78Z

N/A

D1

0F29h

512K

0K

70°C

81.9W

478

130nm

55M

N/A

3.0

800

6.4

Yes

SL7BK

N/A

M0

0F25h

512k

0K

66°C

82.0W

478

130nm

55M

N/A

3.0

800

6.4

Yes

SL7E4

SL7E4

D0

0f34h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

3.0

800

6.4

Yes

SL7KB

SL7KB

D0

0f34h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

3.0

800

6.4

Yes

SL7PM

SL7PM

E0

0F41h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

3.0

800

6.4

Yes

SL7PU

SL7PU

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

530J

3.0

800

6.4

Yes

SL7Z9

SL7Z9

N0

0F43h

2M

0K

67.7°C

84.0W

775

90nm

169M

630[2]

3.0

800

6.4

Yes

SL88J

N/A

E0

0F41h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

3.00

800

6.4

Yes

SL7KK

SL7KK

D0

0f34h

1M

0K

67.7°C

84.0W

775

90nm

125M

530

3.00

800

6.4

Yes

SL7J6

SL7J6

D0

0f34h

1M

0K

67.7°C

84.0W

775

90nm

125M

530

3.0E

800

6.4

Yes

SL79L

SL79L

C0

0F33h

1M

0K

69°C

89.0W

478

90nm

125M

N/A

3.06

533

4.3

Yes

SL6K7

SL6JJ

C1

0F27h

512K

0K

69°C

81.8W

478

130nm

55M

N/A

3.06

533

4.3

Yes

SL6JJ

SL6JJ

C1

0F27h

512K

0K

69°C

81.8W

478

130nm

55M

N/A

3.06

533

4.3

Yes

SL6SM

SL6S5

C1

0F27h

512K

0K

69°C

81.8W

478

130nm

55M

N/A

3.06

533

4.3

Yes

SL6S5

SL6S5

C1

0F27h

512K

0K

69°C

81.8W

478

130nm

55M

N/A

3.06

533

4.3

Yes

SL6QC

SL6PG

D1

0F29h

512K

0K

69°C

81.8W

478

130nm

55M

N/A

3.06

533

4.3

No

N/A

SL87L

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

519

3.20

800

6.4

Yes

SL6WE

SL6WG

D1

0F29h

512K

0K

70°C

82.0W

478

130nm

55M

N/A

3.20

800

6.4

Yes

SL792

N/A

D1

0F29h

512K

0K

70°C

82.0W

478

130nm

55M

N/A

3.20

800

6.4

Yes

SL79M

SL79M

C0

0F33h

1M

0K

73.2°C

103.0W

478

90nm

125M

N/A

3.20

800

6.4

Yes

SL7B8

SL7B8

C0

0F33h

1M

0K

73.2°C

103.0W

478

90nm

125M

N/A

3.20

800

6.4

Yes

SL7E5

SL7E5

D0

0f34h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

3.20

800

6.4

Yes

SL7J7

SL7J7

D0

0f34h

1M

0K

67.7°C

84.0W

775

90nm

125M

540

3.20

800

6.4

Yes

SL7KC

SL7KC

D0

0f34h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

3.20

800

6.4

Yes

SL7KL

SL7KL

D0

0f34h

1M

0K

67.7°C

84.0W

775

90nm

125M

540

3.20

800

6.4

Yes

SL7LA

SL7LA

D0

0f34h

1M

0K

67.7°C

103.0W

775

90nm

125M

N/A[3]

3.20

800

6.4

Yes

SL7PN

SL7PN

E0

0F41h

1M

0K

73.2°C

103.0W

775

90nm

125M

N/A

3.20

800

6.4

Yes

SL7PW

SL7PW

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

540J

3.20

800

6.4

Yes

N/A

SL7PX

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

540[3]

3.20

800

6.4

Yes

SL7Z8

SL7Z8

E0

0F43h

2M

0K

67.7°C

84.0W

775

90nm

169M

640[2]

3.20

800

6.4

Yes

SL88K

N/A

E0

0F41h

1M

0K

69.1°C

89.0W

478

90nm

125M

N/A

3.2EE

800

6.4

Yes

SL7AA

SL7AA

M0

0F25h

512K

2M

64°C

92.1W

478

130nm

178M

N/A

3.40

800

6.4

Yes

SL793

SL793

D1

0F29h

512K

0K

70°C

89.0W

478

130nm

55M

N/A

3.40

800

6.4

Yes

SL7AJ

SL7AJ

C0

0F33h

1M

0K

73°C

103.0W

478

90nm

125M

N/A

3.40

800

6.4

Yes

SL7B9

N/A

C0

0F33h

1M

0K

73.2°C

103.0W

478

90nm

125M

N/A

3.40

800

6.4

Yes

SL7E6

SL7E6

D0

0f34h

1M

0K

73.2°C

103.0W

478

90nm

125M

N/A

3.40

800

6.4

Yes

SL7J8

SL7J8

D0

0f34h

1M

0K

72.8°C

115.0W

775

90nm

125M

550

3.40

800

6.4

Yes

SL7KD

SL7KD

E0

0F41h

1M

0K

73.2°C

103.0W

478

90nm

125M

N/A

3.40

800

6.4

Yes

SL7KM

SL7KM

D0

0f34h

1M

0K

72.8°C

115.0W

775

90nm

125M

550

3.40

800

6.4

Yes

SL7LH

SL7LH

D0

0f34h

1M

0K

72.8°C

115.0W

775

90nm

125M

N/A[3]

3.40

800

6.4

Yes

N/A

SL7PP

E0

0F41h

1M

0K

73.2°C

103.0W

478

90nm

125M

N/A

3.40

800

6.4

Yes

SL7PY

SL7PY

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

550J

3.40

800

6.4

Yes

N/A

SL7PZ

E0

0F41h

1M

0K

67.7°C

84.0W

775

90nm

125M

550[3]

3.40

800

6.4

Yes

SL7RR

SL7RR

M0

0F25h

512K

2M

66°C

109.6W

775

130nm

169M

N/A

3.40

800

6.4

Yes

SL7Z7

SL7Z7

N0

0F43h

2MB

0K

67.7°C

84.0W

775

90nm

125M

650[2]

3.4EE

800

6.4

Yes

SL7CH

SL7CH

M0

0F25h

512K

2M

68°C

102.9W

478

130nm

178M

N/A

3.4EE

800

6.4

Yes

SL7GD

SL7GD

M0

0F25h

512K

2M

66°C

109.6W

775

130nm

178M

N/A

3.46EE

1066

8.5

Yes

SL7NF

SL7NF

M0

0F25h

512K

2M

66°C

110.7W

775

130nm

178M

N/A

3.46EE

1066

8.5

Yes

N/A

SL7RT

M0

0F25h

512K

2M

66°C

110.7W

775

130nm

178M

N/A

3.60

800

6.4

Yes

SL7J9

SL7J9

D0

0f34h

1M

0K

72.8°C

115.0W

775

90nm

125M

560

3.60

800

6.4

Yes

N/A

SL7KN

D0

0f34h

1M

0K

72.8°C

115.0W

775

90nm

125M

560

3.60

800

6.4

Yes

SL7L9

SL7L9

D0

0f34h

1M

0K

72.8°C

115.0W

775

90nm

125M

560[3]

3.60

800

6.4

Yes

N/A

SL7NZ

E0

0F41h

1M

0K

72.8°C

115.0W

775

90nm

125M

560[3]

3.60

800

6.4

Yes

SL7Q2

SL7Q2

E0

0F41h

1M

0K

72.8°C

115.0W

775

90nm

125M

560J

3.60

800

6.4

Yes

SL8J6

SL8J6

E0

0F41h

1M

0K

72.8°C

115.0W

775

90nm

125M

N/A[2]

3.60

800

6.4

Yes

SL7Z5

SL7Z5

N0

0F43h

2MB

0K

72.8°C

115.0W

775

90nm

125M

660[2]

3.80

800

6.4

Yes

SL7P2

SL7P2

E0

0F41h

1M

0K

72.8°C

115.0W

775

90nm

125M

N/A[2]

3.80

800

6.4

Yes

SL82U

SL82U

E0

0F41h

1M

0K

72.8°C

115.0W

775

90nm

125M

570J

3.80

800

6.4

Yes

N/A

SL8J7

E0

0F41h

1M

0K

72.8°C

115.0W

775

90nm

125M

N/A[2]

3.80

800

6.4

Yes

N/A

SL7Z3

N0

0F43h

2MB

0K

72.8°C

115.0W

775

90nm

125M

670[2]

180nm = Willamette core

130nm = Northwood core

90nm = Prescott core

1. HT = Hyper-Threading Technology; EE = Extreme Edition.


[2] This processor supports Intel Extended Memory 64 Technology (EM64T) and Execute Disable Bit (NX).

[3] This processor supports EM64T.

For some time now, it has been obvious that "Pentium 4" has been far more of a brand than a single processor family, leading to endless confusion when users have considered processor upgrades or new system purchases. Because of the three form factors (Socket 423, Socket 478, and Socket 775) and the wide range of features available in the Pentium 4 family, it's essential that you determine exactly what the features are of a particular processor before you purchase it as an upgrade to an existing processor or as part of a complete system.

Pentium 4 Extreme Edition

In November 2003, Intel introduced the Extreme Edition of the Pentium 4, which is notable for being the first desktop PC processor to incorporate L3 cache. The Extreme Edition (or Pentium 4EE) is basically a revamped version of the Prestonia core Xeon workstation/server processor, which has used L3 cache since November 2002. The Pentium 4EE has 512KB of L2 cache and 2MB of L3 cache, which increases the transistor count to 178 million transistors and makes the die significantly larger than the standard Pentium 4. Because of the large die based on the 130-nanometer process, this chip is expensive to produce and the extremely high selling price reflects that. The Extreme Edition is targeted toward the gaming market, where people are willing to spend extra money for additional performance. The additional cache doesn't help standard business applications as well as it helps power-hungry 3D games.

In 2004, revised versions of the Pentium 4 Extreme Edition were introduced. These processors are based on the 90-nanometer (0.09-micron) Pentium 4 Prescott core but with a larger 2MB L2 cache in place of the 512KB L2 cache design used by the standard Prescott-core Pentium 4. Pentium 4 Extreme Edition processors based on the Prescott core do not have L3 cache.

The Pentium 4 Extreme Edition is available in both Socket 478 and Socket T form factors, with clock speeds ranging from 3.2GHz to 3.4GHz (Socket 478) and from 3.4GHz to 3.73GHz (Socket T). For specific features of a particular Pentium 4 Extreme Edition processor, see Table 3.47.

The various Pentium 4 and Pentium 4 Extreme Edition versions, including thermal and power specifications, are shown in Table 3.47.

Memory Requirements

Pentium 4based motherboards use RDRAM, SDRAM, DDR SDRAM, or DDR2 SDRAM memory, depending on the chipset; however, most Pentium 4 systems use DDR or DDR2 SDRAM. Since Intel's contract with RAMBUS expired in 2001, DDR SDRAM and DDR2 SDRAM have become Intel's preferred memory type for mainstream systems.

Note

The early Pentium 4 motherboards that used RDRAM used the same RAMBUS RDRAM RIMM modules introduced for use with some of the chipsets used in Pentium III motherboards. However, the dual RDRAM channels the Pentium 4 uses require you to install pairs of identical modules (called RIMMs). Pentium 4 motherboards that use RDRAM accept either one or two pairs of RIMMs. Both pairs of memory must be the same speed, but need not be the same size.


Pentium 4 Power Supply and Cooling Issues

Compared to older processors, the Pentium 4 requires a lot of electrical power, and because of this, most Pentium 4 motherboards use a new design voltage regulator module powered from 12V instead of 3.3V or 5V, as with previous designs. By using the 12V power, more 3.3V and 5V power is available to run the rest of the system and the overall current draw is greatly reduced with the higher voltage as a source. PC power supplies generate more than enough 12V power, but the ATX motherboard and power supply design originally allotted only one pin for 12V power (each pin is rated for only 6 amps), so additional 12V lines were necessary to carry this power to the motherboard.

The fix appears in the form of a third power connector, called the ATX12V connector. This new connector is used in addition to the standard 20-pin ATX power supply connector and 6-pin auxiliary (3.3V/5V) connector. Fortunately, the power supply itself doesn't require a redesigned power supply; more than enough 12V power is available from the drive connectors. To utilize this, companies such as PC Power and Cooling sell an inexpensive ($8) adapter that converts a standard Molex-type drive power connector to the ATX12V connector. Typically, a 300-watt (the minimum recommended) or larger power supply has more than adequate levels of 12V power for both the drives and the ATX12V connector.

If your power supply is less than the 300-watt minimum recommended, you need to purchase a replacement. Because the ATX12V power supply connector is required for most Intel-based systems from the past few years, virtually all vendors sell an off-the-shelf ATX12V-ready model or one that uses the adapter mentioned previously.

See "Motherboard Power Connectors," p. 1167.


Cooling a high-wattage unit such as the Pentium 4 requires a large active heatsink. These heavy (sometimes more than 1 lb.) heatsinks can damage a CPU or destroy a motherboard when subjected to vibration or shock, especially during shipping. To solve this problem with Pentium 4 motherboards, various methods have been used. Intel's specifications for Socket 423 added four standoffs to the ATX chassis design flanking the Socket 423 to support the heatsink retention brackets. These standoffs enabled the chassis to support the weight of the heatsink instead of depending on the motherboard, as with older designs. Vendors also used other means to reinforce the CPU location without requiring a direct chassis attachment. For example, Asus's P4T motherboard was supplied with a metal reinforcing plate to enable off-the-shelf ATX cases to work with the motherboard.

Socket 478 systems do not require any special standoffs or reinforcement plates; instead they use a unique scheme in which the CPU heatsink attaches directly to the motherboard rather than to the CPU socket or chassis. Motherboards with Socket 478 can be installed into any ATX chassisno special standoffs are required.

Socket T (LGA775) systems use a unique clamping mechanism that holds the processor in place. The heatsink is attached over the processor and clamping mechanism and attaches to the motherboard.

Because the Pentium 4 processor family has been manufactured in three socket types with a wide variation in clock speed and power dissipation, it's essential that you choose a heatsink made specifically for the processor form factor and speed you have purchased (or intend to purchase). This is just one more reason I think it's worth getting a boxed processor instead of an OEM version when building or upgrading a system. If you purchase the shrink-wrapped or "boxed" processor, you get an Intel-specified high-quality heatsink in the box with the process. In addition, you get a 3-year warranty with Intel, making the boxed version ideal for upgraders and system builders.

Xeon Processors

Xeon processors are based on the Pentium 4 and are designed for Socket 603 and Socket 604. Xeon DP processors (often referred to simply as Xeon) are designed for single- and dual-processor workstations:

  • Xeon DP processors with a 400MHz CPU bus feature clock speeds from 1.4GHz to 3GHz.

  • Xeon DP processors with a 533MHz CPU bus feature clock speeds from 2GHz to 3.2GHz.

  • Xeon DP processors with a 667MHz CPU bus (a speed never used by the Pentium 4, by the way) feature clock speeds from 3.33GHz to 3.66GHz.

  • Xeon DP processors with an 800MHz CPU bus feature clock speeds from 2.8GHz to 3.8GHz.

Xeon MP processors are designed for four-way and larger servers. They are available in speeds ranging from 1.4GHz to 3GHz, and all support the 400MHz CPU bus.

For more information about Xeon DP and Xeon MP processors, see my book Upgrading and Repairing Servers.




Upgrading and Repairing PCs
Upgrading and Repairing PCs (17th Edition)
ISBN: 0789734044
EAN: 2147483647
Year: 2006
Pages: 283
Authors: Scott Mueller

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net