Getting Started


Analyzing the Cure Rate of Rubber

This example, using data from Hicks (1973), concerns an experiment to determine the sources of variability in cure rates of rubber. The goal of the experiment was to find out if the different laboratories contributed more to the variance of cure rates than did the different batches of raw materials. This information would be useful in trying to control the cure rate of the final product because it would provide insights into the sources of the variability in cure rates. The rubber used was cured at three temperatures , which were taken to be fixed. Three laboratories were chosen at random, and three different batches of raw material were tested at each combination of temperature and laboratory. The following statements read the data into the SAS data set Cure .

  title 'Analyzing the Cure Rate of Rubber';   data Cure;   input Lab Temp Batch $ Cure @@;   datalines;   1 145 A 18.6   1 145 A 17.0   1 145 A 18.7   1 145 A 18.7   1 145 B 14.5   1 145 B 15.8   1 145 B 16.5   1 145 B 17.6   1 145 C 21.1   1 145 C 20.8   1 145 C 21.8   1 145 C 21.0   1 155 A  9.5   1 155 A  9.4   1 155 A  9.5   1 155 A 10.0   1 155 B  7.8   1 155 B  8.3   1 155 B  8.9   1 155 B  9.1   1 155 C 11.2   1 155 C 10.0   1 155 C 11.5   1 155 C 11.1   1 165 A  5.4   1 165 A  5.3   1 165 A  5.7   1 165 A  5.3   1 165 B  5.2   1 165 B  4.9   1 165 B  4.3   1 165 B  5.2   1 165 C  6.3   1 165 C  6.4   1 165 C  5.8   1 165 C  5.6   2 145 A 20.0   2 145 A 20.1   2 145 A 19.4   2 145 A 20.0   2 145 B 18.4   2 145 B 18.1   2 145 B 16.5   2 145 B 16.7   2 145 C 22.5   2 145 C 22.7   2 145 C 21.5   2 145 C 21.3   2 155 A 11.4   2 155 A 11.5   2 155 A 11.4   2 155 A 11.5   2 155 B 10.8   2 155 B 11.1   2 155 B  9.5   2 155 B  9.7   2 155 C 13.3   2 155 C 14.0   2 155 C 12.0   2 155 C 11.5   2 165 A  6.8   2 165 A  6.9   2 165 A  6.0   2 165 A  5.7   2 165 B  6.0   2 165 B  6.1   2 165 B  5.0   2 165 B  5.2   2 165 C  7.7   2 165 C  8.0   2 165 C  6.6   2 165 C  6.3   3 145 A 19.7   3 145 A 18.3   3 145 A 16.8   3 145 A 17.1   3 145 B 16.3   3 145 B 16.7   3 145 B 14.4   3 145 B 15.2   3 145 C 22.7   3 145 C 21.9   3 145 C 19.3   3 145 C 19.3   3 155 A  9.3   3 155 A 10.2   3 155 A  9.8   3 155 A  9.5   3 155 B  9.1   3 155 B  9.2   3 155 B  8.0   3 155 B  9.0   3 155 C 11.3   3 155 C 11.0   3 155 C 10.9   3 155 C 11.4   3 165 A  6.7   3 165 A  6.0   3 165 A  5.0   3 165 A  4.8   3 165 B  5.7   3 165 B  5.5   3 165 B  4.6   3 165 B  5.4   3 165 C  6.6   3 165 C  6.5   3 165 C  5.9   3 165 C  5.8  

The variables Lab , Temp ,and Batch contain levels of laboratory, temperature, and batch, respectively. The Cure variable contains the response values.

The following SAS statements perform a restricted maximum- likelihood variance component analysis.

  proc varcomp method=reml;   class Temp Lab Batch;   model Cure=TempLab Batch(Lab Temp) / fixed=1;   run;  

The FIXED=1 option indicates that the first factor, Temp , is fixed. The effect specification Temp Lab is equivalent to putting the three terms Temp , Lab , and Temp * Lab in the model. Batch ( Lab Temp ) is equivalent to putting Batch ( Temp * Lab ) in the MODEL statement. The results of this analysis are displayed in Figure 79.1 through Figure 79.4.

start figure
  Analyzing the Cure Rate of Rubber   Variance Components Estimation Procedure   Class Level Information   Class         Levels    Values   Temp               3    145 155 165   Lab                3    1 2 3   Batch              3    A B C   Number of Observations Read         108   Number of Observations Used         108   Dependent Variable:    Cure  
end figure

Figure 79.1: Class Level Information
start figure
  Analyzing the Cure Rate of Rubber   Variance Components Estimation Procedure   REML Iterations   Var(Batch(Temp*   Iteration        Objective         Var(Lab)    Var(Temp*Lab)            Lab))      Var(Error)   0    13.4500060254     0.5094464340                0     2.4004888633     0.5787185225   1    13.0898262160     0.3194348317                0     2.0869636935     0.6016005334   2    13.0893125570     0.3176048001                0     2.0738906134     0.6026217204   3    13.0893125555     0.3176017115                0     2.0738685461     0.6026234568   Convergence criteria met.  
end figure

Figure 79.2: Iteration History
start figure
  Analyzing the Cure Rate of Rubber   Variance Components Estimation Procedure   REML Estimates   Variance Component        Estimate   Var(Lab)                   0.31760   Var(Temp*Lab)                    0   Var(Batch(Temp*Lab))       2.07387   Var(Error)                 0.60262  
end figure

Figure 79.3: REML Estimates
start figure
  Analyzing the Cure Rate of Rubber   Variance Components Estimation Procedure   Asymptotic Covariance Matrix of Estimates   Var(Lab)         Var(Temp*Lab)  Var(Batch(Temp*Lab))           Var(Error)   Var(Lab)                           0.32452                     0   0.04998            1.0259E-12   Var(Temp*Lab)                            0                     0                    0                     0   Var(Batch(Temp*Lab))   0.04998                     0              0.45042   0.0022417   Var(Error)                      1.0259E-12                     0   0.0022417             0.0089668  
end figure

Figure 79.4: Covariance Matrix for REML Estimates

Figure 79.1 provides information about the variables used in the analysis and the number of observations and specifies the dependent variable.

The 'REML Iterations' table, shown in Figure 79.2, displays the iteration history, which includes the value of the objective function associated with REML and the values of the variance components at each iteration.

Figure 79.3 displays the REML estimates of the variance components.

The 'Asymptotic Covariance Matrix of Estimates' table in Figure 79.4 displays the asymptotic covariance matrix of the REML estimates.

The results of the analysis show that the variance attributable to Batch ( Temp * Lab ) (with a variance component of 2.0739) is considerably larger than the variance attributable to Lab (0.3176). Therefore, attempts to reduce the variability of cure rates should concentrate on improving the homogeneity of the batches of raw material used rather than standardizing the practices or equipment within the laboratories. Also, note that since the Batch ( Temp * Lab ) variance is considerably larger than the experimental error (Var(Error)=0.6026), the Batch ( Temp * Lab ) variability plays an important part in the overall variability of the cure rates.




SAS.STAT 9.1 Users Guide (Vol. 7)
SAS/STAT 9.1 Users Guide, Volumes 1-7
ISBN: 1590472438
EAN: 2147483647
Year: 2004
Pages: 132

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net