Computes a survival function
Category: Probability
See: 'CDF Function' on page 418
SDF ( 'dist',quantile,parm-1,...,parm-k )
'dist'
is a character string that identifies the distribution. Valid distributions are as follows :
| Distribution | Argument |
|---|---|
| Bernoulli | ' BERNOULLI ' |
| Beta | ' BETA ' |
| Binomial | ' BINOMIAL ' |
| Cauchy | ' CAUCHY ' |
| Chi-Square | ' CHISQUARE ' |
| Exponential | ' EXPONENTIAL ' |
| F | ' F ' |
| Gamma | ' GAMMA ' |
| Geometric | ' GEOMETRIC ' |
| Hypergeometric | ' HYPERGEOMETRIC ' |
| Laplace | ' LAPLACE ' |
| Logistic | ' LOGISTIC ' |
| Lognormal | ' LOGNORMAL ' |
| Negative binomial | ' NEGBINOMIAL ' |
| Normal | ' NORMAL ' ' GAUSS ' |
| Normal mixture | ' NORMALMIX ' |
| Pareto | ' PARETO ' |
| Poisson | ' POISSON ' |
| T | ' T ' |
| Uniform | ' UNIFORM ' |
| Wald (inverse Gaussian) | ' WALD ' ' IGAUSS ' |
| Weibull | ' WEIBULL ' |
Note: Except for T, F, and NORMALMIX, you can minimally identify any distribution by its first four characters .
quantile
is a numeric random variable.
parm-1,...,parm-k
are optional shape , location , or scale parameters appropriate for the specific distribution.
The SDF function computes the survival function (upper tail) from various continuous and discrete distributions. For more information, see the on page 419.
| SAS Statements | Results |
|---|---|
| y=sdf( ' BERN ' ,0,.25); | 0.25 |
| y=sdf( ' BETA ' ,0.2,3,4); | 0.09011 |
| y=sdf( ' BINOM ' ,4,.5,10); | 0.62305 |
| y=sdf( ' CAUCHY ' ,2); | 0.14758 |
| y=sdf( ' CHISQ ' ,11.264,11); | 0.42142 |
| y=sdf( ' EXPO ' ,1); | 0.36788 |
| y=sdf( ' F ' ,3.32,2,3); | 0.17361 |
| y=sdf( ' GAMMA ' ,1,3); | 0.91970 |
| y=sdf( ' HYPER ' ,2,200,50,10); | 0.47633 |
| y=sdf( ' LAPLACE ' ,1); | 0.18394 |
| y=sdf( ' LOGISTIC ' ,1); | 0.26894 |
| y=sdf( ' LOGNORMAL ' ,1); | 0.5 |
| y=sdf( ' NEGB ' ,1,.5,2); | 0.5 |
| y=sdf( ' NORMAL ' ,1.96); | 0.025 |
| y=pdf( ' NORMALMIX ' ,2.3,3,.33,.33,.34, .5,1.5,2.5,.79,1.6,4.3); | 0.2819 |
| y=sdf( ' PARETO ' ,1,1); | 1 |
| y=sdf( ' POISSON ' ,2,1); | 0.08030 |
| y=sdf( ' T ' ,.9,5); | 0.20469 |
| y=sdf( ' UNIFORM ' ,0.25); | 0.75 |
| y=sdf( ' WALD ' ,1,2); | 0.37230 |
| y=sdf( ' WEIBULL ' ,1,2); | 0.36788 |