MGX-8850-Based PoP


We will now configure the third PoP. In this case, the controlled switch is a PXM-45-based MGX-8850. An RPM-PR card in slot 9 acts as LSC. Another RPM-PR card functions as eLSR. There is also an external eLSR using a Cisco 7507 router. This topology is shown in Figure 6-11.

Figure 6-11. MGX-8850-Based PoP


The upcoming sections delve into the MGX-8850-based POP configuration, following the same sequence as with the BPX-8600- and IGX-8400-based POPs.

ATM LSR Bringup: PXM-45-Based MGX-8850 + LSC

On an MGX-8850, the different controllers have reserved controller IDs. Controller ID 1 is assigned to PAR, 2 to PNNI, 3 to LSC, and 4 through 20 to different LSC instances.

We can start this configuration by adding the controller in the PXM-45 controller card. See Example 6-53.

Example 6-53. Adding the LSC from the Switch
 P3-m8850.8.PXM.a > addcontroller 3 i 3 9 LSC_RPM_PR_9 P3-m8850.8.PXM.a > dspcontroller P3-m8850                         System Rev: 02.01   Nov. 24, 2001 12:33:31 GMT MGX8850                                              Node Alarm: NONE Number of Controllers:        1 Controller Name:              LSC_RPM_PR_9 Controller Id:                3 Controller Location:          Internal Controller Type:              LSC Controller Logical Slot:      9 Controller Bay Number:        0 Controller Line Number:       0 Controller VPI:               0 Controller VCI:               0 Controller In Alarm:          NO Controller Error: P3-m8850.8.PXM.a > 

We create an MPLS resource partition in the switch interface in the RPM-PR acting as LSC (see Example 6-54). The switch interface is the internal ATM interface facing the backplane. We will partition ingress and egress bandwidth resources and VPI and VCI ranges. After the resource partition is configured for VSI to use, we will configure the RPM-PR as LSC by enabling VSI as the label-control protocol.

Example 6-54. Creating an MPLS Resource Partition in the RPM
 P3_LSC_m8850_RPM-PR_9(config)#interface switch 1 P3_LSC_m8850_RPM-PR_9(config-if)#switch partition vcc 2 3   ! <------------------+ P3_LSC_m8850_RPM-PR_9(config-if-swpart)#ingress-percentage-bandwidth 100 100 !   | P3_LSC_m8850_RPM-PR_9(config-if-swpart)#egress-percentage-bandwidth 100 100  !   | P3_LSC_m8850_RPM-PR_9(config-if-swpart)#vpi 0 0                              !   | P3_LSC_m8850_RPM-PR_9(config-if-swpart)#vci 1 3808                           !   | P3_LSC_m8850_RPM-PR_9(config-if-swpart)#exit                                 !   | P3_LSC_m8850_RPM-PR_9(config-if)#                                            !    P3_LSC_m8850_RPM-PR_9(config-if)#label-control-protocol vsi id 3   ! <-----------+ 

We are using partition ID = 2 and controller ID = 3. This specifies the partition-to-controller mapping. Controller ID 3 (as specified in the addcontroller command) manages resource partitions with ID = 2.

Even though we apply the configuration command in the RPM-PR card, the resource partition resides in the PXM-45 controller card because that's the location of the VSI proxy slave.

The controller ID needs to be 3, as specified in the resource partition. We can verify that the LSC discovers the slaves using show controller vsi session, as shown in Example 6-55.

Example 6-55. Checking the VSI Sessions
 P3_LSC_m8850_RPM-PR_9#show controller vsi session Interface  Session  VCD  VPI/VCI   Switch/Slave Ids  Session State Switch1    0        3    0/65507   0/1               ESTABLISHED Switch1    1        4    0/65508   0/2               ESTABLISHED Switch1    2        5    0/65509   0/0               UNKNOWN Switch1    3        6    0/65510   0/0               UNKNOWN Switch1    4        7    0/65511   0/0               UNKNOWN Switch1    5        8    0/65512   0/0               UNKNOWN Switch1    6        9    0/65513   0/7               ESTABLISHED ! Logical Slot 7 Switch1    7        10   0/65514   0/0               UNKNOWN Switch1    8        11   0/65515   0/0               UNKNOWN Switch1    9        12   0/65516   0/11              ESTABLISHED Switch1    10       13   0/65517   0/12              ESTABLISHED Switch1    11       14   0/65518   0/0               UNKNOWN Switch1    12       15   0/65519   0/0               UNKNOWN P3_LSC_m8850_RPM-PR_9# P3_LSC_m8850_RPM-PR_9#show controller vsi session 6 Interface:           Switch1   Session number:       6 VCD:                 9         VPI/VCI:              0/65513 Switch type:         MGX       Switch id:            0 Controller id:       3         Slave id:             7 Keepalive timer:     15        Powerup session id:   0x3BFD9DED Cfg/act retry timer: 2/4       Active session id:    0x3BFD9DED Max retries:          4        Ctrl port log intf:   0x01074B01  ! Slave in PXM-45 Trap window:         50        Max/actual cmd wndw:  21/21 Trap filter:         all       Max checksums:        83 Current VSI version: 2         Min/max VSI version:  2/2 Messages sent:       14        Inter-slave timer:    2.000 Messages received:   14        Messages outstanding: 0 P3_LSC_m8850_RPM-PR_9# 

From the output of the command show controller vsi session, you can see that logical slot 7, which spans redundant physical slots 7 and 8, uses session 6.

As mentioned in Chapter 3 in the section "MGX-8850 and MGX-8950 with an RPM-PR-Based LSC," the LSC implementation in an MGX-8850 switch has a fixed-base VC equal to 0/65507. There are also two well-known VCs (0/65526 and 0/65528) for IPC communication.

We now enable CEF and configure a loopback interface. Refer to Example 6-56.

Example 6-56. Initial MPLS Configuration
 P3_LSC_m8850_RPM-PR_9#conf t Enter configuration commands, one per line.  End with CNTL/Z. P3_LSC_m8850_RPM-PR_9(config)#ip cef P3_LSC_m8850_RPM-PR_9(config)#interface loopback 0 P3_LSC_m8850_RPM-PR_9(config-if)#ip address 172.27.1.3 255.255.255.0 P3_LSC_m8850_RPM-PR_9(config-if)#exit P3_LSC_m8850_RPM-PR_9(config)#mpls ip P3_LSC_m8850_RPM-PR_9(config)#mpls ldp router-id loopback 0 P3_LSC_m8850_RPM-PR_9(config)#mpls label protocol ldp P3_LSC_m8850_RPM-PR_9(config)#end P3_LSC_m8850_RPM-PR_9# 

We finish the LSC configuration by setting up the initial MPLS configuration: LDP router-id, label protocol, and IGP routing.

RPM-PR as an eLSR Configuration

To start the RPM-PR configuration as an eLSR, we perform the initial configuration and create a resource partition of the switch interface using partition ID 2 and controller ID 3 so that it is managed from the LSC. Once more, the partition command is executed in the RPM-PR (even for the PE) but is kept in the PXM-45 proxy slave. These steps are shown in Example 6-57.

Example 6-57. RPM eLSR Configuration
 PE_m8850_RPM-PR_10# PE_m8850_RPM-PR_10#conf t Enter configuration commands, one per line.  End with CNTL/Z. PE_m8850_RPM-PR_10(config)#ip cef PE_m8850_RPM-PR_10(config)#interface loopback 0 PE_m8850_RPM-PR_10(config-if)#ip address 172.27.1.132 255.255.255.255 PE_m8850_RPM-PR_10(config-if)#exit PE_m8850_RPM-PR_10(config)#mpls label protocol ldp PE_m8850_RPM-PR_10(config)#mpls ldp router-id loopback 0 PE_m8850_RPM-PR_10(config)#interface switch 1 PE_m8850_RPM-PR_10(config-if)#switch partition vcc 2 3 PE_m8850_RPM-PR_10(config-if-swpart)#ingress-percentage-bandwidth 100 100 PE_m8850_RPM-PR_10(config-if-swpart)#egress-percentage-bandwidth 100 100 PE_m8850_RPM-PR_10(config-if-swpart)#vpi 0 0 PE_m8850_RPM-PR_10(config-if-swpart)#vci 1 3808 PE_m8850_RPM-PR_10(config-if-swpart)#^Z PE_m8850_RPM-PR_10#show switch partitions Part Ctrlr  Guar    Max     Guar    Max Id   Id     Ing%Bw  Ing%Bw  Egr%Bw  Egr%Bw  minVpi maxVpi minVci maxVci MaxCons 2    3      100     100     100     100     0      0      1      3808   3808 PE_m8850_RPM-PR_10# 

Finally, on the eLSR, we configure an MPLS subinterface and routing. Refer to Example 6-58.

Example 6-58. Configuring the PE MPLS Subinterface
 PE_m8850_RPM-PR_10#conf t Enter configuration commands, one per line.  End with CNTL/Z. PE_m8850_RPM-PR_10(config)#interface switch 1.27 mpls PE_m8850_RPM-PR_10(config-subif)#ip unnumbered loopback 0 PE_m8850_RPM-PR_10(config-subif)#mpls ip PE_m8850_RPM-PR_10(config-subif)#exit PE_m8850_RPM-PR_10(config)#router ospf 1 PE_m8850_RPM-PR_10(config-router)#network 172.27.1.132 0.0.0.0 area 0 PE_m8850_RPM-PR_10(config-router)#^Z PE_m8850_RPM-PR_10# 

We now go to the LSC RPM-PR in slot 9. We can see in Example 6-59 that the PE interface is now visible to VSI (via a VSI interface trap from the PXM-45).

Example 6-59. Showing the VSI Interfaces
 P3_LSC_m8850_RPM-PR_9#show controllers vsi descriptor Phys desc: 9.1 Log intf:  0x01074B01   ! The slave resides in the PXM-45 card (proxy slave) Interface: switch control port IF status: n/a                   IFC state: ACTIVE Min VPI:   0                     Maximum cell rate:  353208 Max VPI:   0                     Available channels: 3808 Min VCI:   1                     Available cell rate (forward):  353208 Max VCI:   3808                  Available cell rate (backward): 353208 Phys desc: 10.1 Log intf:  0x01075301   ! The slave resides in the PXM-45 card (proxy slave) Interface: n/a IF status: n/a                   IFC state: ACTIVE Min VPI:   0                     Maximum cell rate:  353208 Max VPI:   0                     Available channels: 3808 Min VCI:   1                     Available cell rate (forward):  353208 Max VCI:   3808                  Available cell rate (backward): 353208 P3_LSC_m8850_RPM-PR_9# 

As shown in Example 6-60, we need to create an XTagATM interface, map it to the controlled interface, enable MPLS on it, and advertise the loopback IP address in area 0 under an OSPF process.

Example 6-60. Creating an Extended MPLS ATM Interface
 P3_LSC_m8850_RPM-PR_9#conf t Enter configuration commands, one per line.  End with CNTL/Z. P3_LSC_m8850_RPM-PR_9(config)#interface xTagATM 101 P3_LSC_m8850_RPM-PR_9(config-if)#extended-port switch 1 descriptor "10.1" P3_LSC_m8850_RPM-PR_9(config-if)#ip unnumbered loopback 0 P3_LSC_m8850_RPM-PR_9(config-if)#mpls ip P3_LSC_m8850_RPM-PR_9(config-if)#^Z P3_LSC_m8850_RPM-PR_9# 

In this example, we use the extended-port command with the parameter descriptor. As described earlier, this descriptor is an ASCII value that can be displayed using show controllers vsi descriptor. In the following section, we will use another method of identifying the controlled switch interface to be used with the extended-port command.

7507 as an eLSR Configuration

To configure an external eLSR, we start by configuring the LC-ATM in the controlled switch connecting to the eLSR. In an AXSM card, first we configure the card SCT, choosing SCT 5 (for PNNI plus MPLS support). Refer to Example 6-61. In the vast majority of cases (always in practical terms), card SCT 5 (without policing for ATMF service category) should be used.

Example 6-61. Configuring the AXSM Card SCT
 P3-m8850.1.AXSM.a > dspcd                     Front Card          Upper Card          Lower Card                     ----------          ----------        ------------ Card Type:          AXSM-16-T3E3/B      SMB-8-T3            --- State:              Active              Present             Absent Serial Number:      SAG05274SE8         SBK045200R0         --- Boot FW Rev:        2.1(70.107)P2       ---                 --- SW Rev:             2.1(70.107)P2       ---                 --- 800-level Rev:      A0                  A0                  --- Orderable Part#:    800-07911-05        800-05029-02        --- PCA Part#:          73-5045-4           73-4223-2           --- CLEI Code:          BAA5YL6CAA          BA7IW8HAAA          --- Reset Reason:       Power ON Reset SCT File Configured Version: 1 SCT File Operational Version: 1 Card SCT Id: 0 !DefaultSCT used! #Lines #Ports #Partitions   #SPVC   #SPVP    #SVC ------ ------ ----------- ------- ------- ------- Type <CR> to continue, Q<CR> to stop:      0      0           0       0       0       0 Port Group[1]: #Chans supported:65280  Lines:1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Port Group[2]: #Chans supported:65280  Lines:2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 P3-m8850.1.AXSM.a > cnfcdsct 5 P3-m8850.1.AXSM.a > 

We will now up the physical line to the eLSR, configure it to use PLCP to match the default in the router, create a logical port, and create a resource partition for MPLS. We need to use partition ID 2 and controller ID 3. These steps are shown in Example 6-62.

Example 6-62. Configuring the AXSM VSI Slave
 P3-m8850.1.AXSM.a > upln 1.1 P3-m8850.1.AXSM.a > cnfln -ds3 1.1 -lt 2 P3-m8850.1.AXSM.a > addport 1 1.1 96000 96000 4 1 P3-m8850.1.AXSM.a > dspports ifNum Line Admin Oper. Guaranteed Maximum     Port SCT Id     ifType  VPI            State State Rate       Rate                               (VNNI only) ----- ---- ----- ----- ---------- --------- ----------------- ------ ----------     1  1.1    Up  Down      96000     96000   4                   UNI    0 P3-m8850.1.AXSM.a > addpart 1 2 3 1000000 1000000 1000000 1000000 0 255 1 65535   512 1024 P3-m8850.1.AXSM.a > dspparts if  part Ctlr egr     egr     ingr    ingr    min max   min   max  min   max Num ID   ID   GuarBw  MaxBw   GuarBw  MaxBw   vpi vpi   vci   vci  conn  conn              (.0001%)(.0001%)(.0001%)(.0001%) -----------------------------------------------------------------------------  1   2    3 1000000 1000000 1000000 1000000    0  255     1 65535    512   1024 P3-m8850.1.AXSM.a > 

Port SCT 4 is specified with the addport command. SCT 4 supports policing for the ATMF service category. It was chosen because policing for SVCs and SPVCs is applied in this port facing Customer Premises Equipment (CPE).

A VSI Intf Trap is sent to the LSC. The partition is now visible from the LSC, as shown in Example 6-63.

Example 6-63. Checking the VSI Resource Partition from the LSC
 P3_LSC_m8850_RPM-PR_9#show controllers vsi descriptor Phys desc: 1:1.1:1 Log intf:  0x01011801   ! The slave resides in the AXSM card in slot 1. Interface: n/a IF status: n/a                   IFC state: FAILED_EXT Min VPI:   0                     Maximum cell rate:  96000 Max VPI:   255                   Available channels: 1024 Min VCI:   1                     Available cell rate (forward):  96000 Max VCI:   65535                 Available cell rate (backward): 96000 

The LSC already has the initial MPLS configuration, so we only need to create an Extended MPLS interface and bind it to the partition. See Example 6-64.

Example 6-64. Creating and Binding an LC-ATM from the LSC
 P3_LSC_m8850_RPM-PR_9#conf t Enter configuration commands, one per line.  End with CNTL/Z. P3_LSC_m8850_RPM-PR_9(config)#int xtag 1111 P3_LSC_m8850_RPM-PR_9(config-if)#ip unnumbered loopback 0 P3_LSC_m8850_RPM-PR_9(config-if)#mpls ip P3_LSC_m8850_RPM-PR_9(config-if)#extended-port switch 1 descriptor "1:1.1:1" P3_LSC_m8850_RPM-PR_9(config-if)#^Z P3_LSC_m8850_RPM-PR_9# 

The LSR portion is ready. We perform the initial configuration in the eLSR. See Example 6-65.

Example 6-65. Performing the Initial MPLS Configuration in the eLSR
 PE_7507#conf t Enter configuration commands, one per line.  End with CNTL/Z. PE_7507(config)#ip cef distributed PE_7507(config)#interface loopback 0 PE_7507(config-if)#ip address 172.27.1.133 255.255.255.255 PE_7507(config-if)#exit PE_7507(config)#mpls ip PE_7507(config)#mpls label protocol ldp PE_7507(config)#mpls ldp router-id loopback 0 

Next we configure an interface for MPLS, as shown in Example 6-66. In this step, we also set up the IGP.

Example 6-66. Configuring an MPLS-Enabled Subinterface
 PE_7507(config)#interface ATM 5/0 PE_7507(config-if)#no shutdown PE_7507(config-if)#exit PE_7507(config)#interface ATM 5/0.27 mpls PE_7507(config-subif)#ip unnumbered loopback 0 PE_7507(config-subif)#mpls ip PE_7507(config-subif)#exit PE_7507(config)#router ospf 1 PE_7507(config-router)#network 172.27.1.133 0.0.0.0 area 0 PE_7507(config-router)#^Z PE_7507# 

Displaying Cross-Connect Details

We can see the cross-connects in the AXSM card using the command dspvsicons. Refer to Example 6-67.

Example 6-67. Using the Command dspvsicons
 m8850-7a.1.AXSM.a > dspvsicons  LCN   Type     lLin    lVpi  lVci   rLin    rVpi  rVci  cksmVal  pCref ======================================================================== 00434 s/svc    01011801 0000 000032 01074b01 0000 000052 00000000 0000 00435 p/svc    01011801 0001 000038 01074b01 0000 000053 00000000 0000 00436 s/svc    01011801 0001 000033 01074b01 0000 000054 00000000 0000 00437 p/svc    01011801 0001 000048 01075301 0000 000049 00000000 0000 00438 s/svc    01011801 0001 000035 01075301 0000 000102 00000000 0000 m8850-7a.1.AXSM.a > 

We can also see the details of the cross-connects from the LSC, as shown in Example 6-68.

Example 6-68. Checking the LSR Cross-Connects
 P3_LSC_m8850_RPM-PR_9# P3_LSC_m8850_RPM-PR_9#show xtagatm cross-connect descriptor "1:1.1:1" 1 36 Phys desc:   1:1.1:1 Interface:   XTagATM1111 Intf type:   extended tag ATM VPI/VCI:     1/36 X-Phys desc: 10.1 X-Interface: XTagATM101 X-Intf type: extended tag ATM X-VPI/VCI:   0/35 Conn-state:  UP Conn-type:   input Cast-type:   point-to-point Rx service type:   Tag COS 0 Rx cell rate:      n/a Rx peak cell rate: 96000 Tx service type:   n/a Tx cell rate:      n/a Tx peak cell rate: n/a P3_LSC_m8850_RPM-PR_9# P3_LSC_m8850_RPM-PR_9#show xtagatm cross-connect descriptor "1:1.1:1" 0 32 Phys desc:   1:1.1:1 Interface:   XTagATM1111 Intf type:   extended tag ATM VPI/VCI:     0/32 X-Phys desc: 9.1 X-Interface: n/a X-Intf type: switch control port X-VPI/VCI:   0/35 Conn-state:  UP Conn-type:   input/output Cast-type:   point-to-point Rx service type:   Tag COS 7 Rx cell rate:      n/a Rx peak cell rate: 96000 Tx service type:   Tag COS 7 Tx cell rate:      n/a Tx peak cell rate: 96000 P3_LSC_m8850_RPM-PR_9# 

It is important to note two things when comparing the first cross-connect (an LVC) to the second one (a control-vc). First, control-vcs are bidirectional, and LVCs are unidirectional; for LVCs, we only see either the Tx or the Rx directions. Second, LVCs by default use the Tag COS 0 service type, and control-vcs use the Tag COS 7 service type.




Cisco Multiservice Switching Networks
Cisco Multiservice Switching Networks
ISBN: 1587050684
EAN: 2147483647
Year: 2002
Pages: 149

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net