Attaching Customer Premises Equipment


In this section, you attach two external customer premises equipment (CPE) routers to your network, as shown in Figure 10-9. A Cisco 7505 router is connected to port 2:1.1:1 in the MGX-8850 PNNI switch, and a Cisco 7507 router is connected to port 12.2 in the BPX-SES PNNI node. Afterwards, you will configure SVCs and SPVCs.

Figure 10-9. Attaching CPEs


The CPEs are configured with an End System Identifier (ESI). They get their ATM addresses using the ILMI address registration process. Each ESI includes the platform number. The router AESAs are shown in Figure 10-10.

Figure 10-10. CPEs' AESAs


If you analyze the router AESAs shown in Figure 10-10, you can see that the C7505 router is connected to the MGX-8850 and the C7507 router is connected to the BPX-8600-SES.

You start the configuration by connecting and setting up an SVC-capable router to the BPX-SES PNNI node's port 12.2. On the BPX side, you use the commands upln, addport, and upport to up Layers 1 and 2 in the physical link. You use the command cnfport to enable ILMI and configure it to run on the BXM card. Subsequently, you configure the VSI slave by configuring a VSI resource partition with the command cnfrsrc and apply SCT 2 to the resource partition with the command cnfvsiif. SCT 2 includes policing for ATM Forum service types.

That is all the provisioning needed on the slave side. As you can infer, this configuration is independent of the controller application (MPLS, PNNI, or something else).

In the SES PNNI controller, you need to configure UNI signaling in the now-visible pnport 12.2 (see Example 10-43). As I mentioned earlier, this also starts dILMI passthrough between the VSI master and VSI slave.

Example 10-43. Configuring UNI Signaling in a PnPort
 SES-3a.1.PXM.a > dnpnport 12.2 SES-3a.1.PXM.a > cnfpnportsig 12.2 -univer uni40 SES-3a.1.PXM.a > uppnport 12.2 

On the router side, you start the provisioning by adding UNI signaling and ILMI PVCs (see Example 10-44). Using VCIs 5 and 16, respectively, you configure both UNI and ILMI and up the interface.

Example 10-44. CPE Signaling and ILMI Configuration
 C7507-1a(config)#interface ATM 6/0 C7507-1a(config-if)#pvc Sig 0/5 qsaal C7507-1a(config-if-atm-vc)#vbr-nrt 149760 2000 16 C7507-1a(config-if-atm-vc)#pvc ILMI 0/16 ilmi C7507-1a(config-if-atm-vc)#vbr-nrt 1498 1498 16 C7507-1a(config-if-atm-vc)#exit C7507-1a(config-if)#atm ilmi-enable % ATM6/0 :ILMI enabling will take effect in the next interface restart C7507-1a(config-if)#atm ilmi-keepalive 5 C7507-1a(config-if)#atm uni-version 4.0 C7507-1a(config-if)#no shut C7507-1a(config-if)# 

The signaling and ILMI virtual circuits have been configured with traffic parameters conforming to ATM Forum specifications. For the signaling VC traffic parameter, refer to ATMF specification af-sig-0061.000, Section 4.2. For ILMI PVC characteristics, refer to ATMF specification af-ilmi-0065.000, Section 5.1.

NOTE

On the PNNI switch, signaling and PNNI VCs use the signaling VSI service type, which has the highest priority. The signaling service type has a service type number of 0x0002. You can display the traffic parameter configuration with the command dsppnctlvc and modify it with the command cnfpnctlvc. PNNI RCC virtual circuits default to PCR = 906 CPS, SCR = 453 CPS, and MBS = 171 cells.


As discussed in Chapter 8, ATM signaling uses Service-Specific Connection-Oriented Protocol (SSCOP) as a reliable transport. SSCOP provides error recovery, flow control, and error and status reporting. You can check the SSCOP status, timers, and statistics in the router using the command show sscop, as shown in Example 10-45.

Example 10-45. Using the Command show sscop
 C7507-1a#show sscop ATM 6/0 SSCOP details for interface ATM6/0    Current State = Active,   Uni version = 4.0    Send Sequence Number: Current = 95,  Maximum = 125    Send Sequence Number Acked = 95    Rcv Sequence Number: Lower Edge = 95, Upper Edge = 95, Max = 125    Poll Sequence Number = 1157, Poll Ack Sequence Number = 1157    Vt(Pd) = 0   Vt(Sq) = 0    Timer_IDLE = 10 - Active    Timer_CC = 1 - Inactive    Timer_POLL = 1000 - Inactive    Timer_KEEPALIVE = 5 - Inactive    Timer_NO-RESPONSE = 45 - Inactive    Current Retry Count = 0, Maximum Retry Count = 10    AckQ count = 0, RcvQ count = 0, TxQ count = 0    AckQ HWM = 1,  RcvQ HWM = 0, TxQ HWM = 1    Local connections currently pending = 0    Max local connections allowed pending = 0    Statistics -       Pdu's Sent = 1513, Pdu's Received = 1513, Pdu's Ignored = 0       Begin = 3/0, Begin Ack = 0/3, Begin Reject = 0/0       End = 2/0, End Ack = 0/2       Resync = 0/0, Resync Ack = 0/0       Sequenced Data = 112/112, Sequenced Poll Data = 0/0       Poll = 1313/1396, Stat = 1396/1313, Unsolicited Stat = 0/0       Unassured Data = 0/0, Mgmt Data = 0/0, Unknown Pdu's = 0       Error Recovery/Ack = 0/0, lack of credit 0 C7507-1a# 

Finally, you create a multipoint subinterface where you configure the IP address and subnet mask and the ESI for ILMI address registration. See Example 10-46.

Example 10-46. Configuring the CPE Subinterface
 C7507-1a(config-if)#interface ATM 6/0.10 multipoint C7507-1a(config-subif)#description Subinterface for SVCs towards BPX-SES switch. C7507-1a(config-subif)#ip address 172.18.1.1 255.255.255.0 C7507-1a(config-subif)#atm esi-address 00000C750701.01 C7507-1a(config-subif)# Feb 20 03:47:23.728: %LANE-6-INFO: ATM6/0: ILMI prefix add event received C7507-1a(config-subif)#^Z 

You can see in Example 10-47 that ILMI is up from the router. You see the following fields:

  • The state is UpAndNormal.

  • IP addresses and interfaces have been exchanged.

  • The maximum VPI and VCI bits have been negotiated.

  • The ATM address has been registered using the PNNI switch prefix.

Example 10-47. Showing the ILMI Status
 C7507-1a#show atm ilmi-status Interface : ATM6/0 Interface Type : Private UNI (User-side) ILMI VCC : (0, 16) ILMI Keepalive : Enabled/Up (5 Sec 4 Retries) ILMI State:       UpAndNormal Peer IP Addr:     30.1.1.50       Peer IF Name:     atmVirtual.12.1.2.2 Peer MaxVPIbits:  0               Peer MaxVCIbits:  16 Active Prefix(s) : 47.0000.0000.0000.0100.0100.8600 End-System Registered Address(s) : 47.0000.0000.0000.0100.0100.8600.0000.0c75.0701.01(Confirmed) C7507-1a# 

You can also observe the router's ILMI exchanged parameters from the PNNI node. In particular, because you have a distributed ILMI application, you can check the parameters from the VSI slave using the command dspnebdisc, as shown in Example 10-48.

Example 10-48. Displaying ILMI Neighbor Discovery from the Controlled Switch
 b8620-5a       TRM   Cisco           BPX 8620  9.3.4L    Feb. 20 2002 11:19 GMT Node Neighbor Discovery Port     State    Protocol Advtise NbrIpAddress    NbrIfName 4.3      ACTIVE   ILMI     Yes     0.0.0.0         atmVirtual.01.1.2.02 11.2     ACTIVE   ILMI     Yes     172.18.111.253  ATM0/1/1 12.2     ACTIVE   ILMI     Yes     172.18.1.1      ATM6/0 Last Command: dspnebdisc Next Command: 

You can see the ILMI visibility from the SES controller shelf using the commands dsppnport and dsppnilmi. You can display the ILMI registered address using the command dspilmiaddr (see Example 10-49). That address is a local reachable address that is included using the command dsppnni-reachable-addr local.

Example 10-49. Displaying ILMI Registered Address from the PNNI Controller
 SES-3a.1.PXM.a > dspilmiaddr 12.2 47.0000.0000.0000.0100.0100.8600.0000.0c75.0701.01       scope: LocalNetwork SES-3a.1.PXM.a > 

The other router is a Cisco 7505 connected to port 2:1.1:1 in the MGX-8850-based PNNI node.

On the AXSM card, you start by configuring the card SCT to 3. Exactly the same as with the PNNI links, you up a line and add a port and partition using the commands upln, addport, and addpart, respectively. In the addport command, you configure the SCT port to 2 because the interface is connected to an externally controlled router, and you want to turn on policing. You start ILMI in the slave using the command upilmi.

Finally, on the master side, you configure the pnport signaling to UNI. See Example 10-50.

Example 10-50. Configuring UNI Signaling in the PnPort
 m8850-7a.7.PXM.a > dnpnport 2:1.1:1 m8850-7a.7.PXM.a > cnfpnportsig 2:1.1:1 -univer uni40 m8850-7a.7.PXM.a > uppnport 2:1.1:1 

The router-side configuration is equivalent to the other router's configuration. On the 0/0.10 subinterface, you configure the IP address and ESI shown in Example 10-51.

Example 10-51. CPE Subinterface Configuration for SVCs
 C7505-7a(config-if)#interface ATM 0/0.10 multipoint C7505-7a(config-subif)#description Subinterface for SVCs towards MGX-8850 switch. C7505-7a(config-subif)#ip address 172.18.1.2 255.255.255.0 10:56:22: %LANE-6-INFO: ATM0/0: ILMI prefix add event received C7505-7a(config-subif)#atm esi-address 00000C750501.01 

You can see the registered NSAP address in Example 10-52.

Example 10-52. Showing the Registered NSAP Address from the CPE
 C7505-7a#sh atm ilmi-status Interface : ATM0/0 Interface Type : Private UNI (User-side) ILMI VCC : (0, 16) ILMI Keepalive : Enabled/Up (5 Sec 4 Retries) ILMI State:       UpAndNormal Peer IP Addr:     0.0.0.0         Peer IF Name:     atmVirtual.02.1.1.01 Peer MaxVPIbits:  0               Peer MaxVCIbits:  16 Active Prefix(s) : 47.0000.0000.0000.0100.0200.8850 End-System Registered Address(s) : 47.0000.0000.0000.0100.0200.8850.0000.0c75.0501.01(Confirmed) C7505-7a# 

The two CPEs are successfully connected to the network and are ready to be configured. ILMI is a great aid in parameter autonegotiation.

SVCs

You use the setup shown in Figure 10-11 for the SVC configuration. For the SVC setup, multipoint ATM subinterfaces .10 are used in the routers, configuring the IP subnetwork 172.18.1.0/24.

Figure 10-11. Network Setup for SVCs


NOTE

You configured the subinterface for SVCs in the preceding section. It is important to note that the ESI was configured in the subinterface, so you can have multiple registered addresses per physical interface. If you use multiple subinterfaces for SVCs, each subinterface should have its own AESA. If no ILMI is running in the link, you need to manually configure the AESA using the command atm nsap in the router and the command addaddr in the PNNI node.


To configure SVCs, you need to set up the destination IP address-to-destination AESA address mapping. You first create a multipoint subinterface and configure an ATM SVC and corresponding ATM AESA destination, as shown in Example 10-53.

Example 10-53. Subinterface Configuration for SVCs
 C7507-1a(config)#interface ATM 6/0.10 multipoint C7507-1a(config-subif)#svc SVC_test nsap   47.0000.0000.0000.0100.0200.8850.0000.0c75.0501.01 

You enter ATM-VC configuration mode (see Example 10-54). In this mode, you configure the destination Layer 3 address, as well as encapsulation, OAM characteristics, and traffic and QoS parameters.

Example 10-54. ATM-VC Configuration Mode
 C7507-1a(config-if-atm-vc)#encapsulation aal5snap C7507-1a(config-if-atm-vc)#vbr-nrt 512 256 C7507-1a(config-if-atm-vc)#oam-svc manage C7507-1a(config-if-atm-vc)#protocol ip 172.18.1.2 broadcast C7507-1a(config-if-atm-vc)#^Z C7507-1a# 

The broadcast keyword in the IP mapping allows broadcasts such as routing updates to traverse this SVC.

You do the same on the other end, as shown in Example 10-55.

Example 10-55. Remote CPE Configuration for SVCs
 C7505-7a#conf t Enter configuration commands, one per line.  End with CNTL/Z. C7505-7a(config)#interface ATM 0/0.10 multipoint C7505-7a(config-subif)# svc SVC_test nsap   47.0000.0000.0000.0100.0100.8600.0000.0c75.0701.01 C7505-7a(config-if-atm-vc)#encapsulation aal5snap C7505-7a(config-if-atm-vc)#vbr-nrt 512 256 C7505-7a(config-if-atm-vc)#oam-svc manage C7505-7a(config-if-atm-vc)#protocol ip 172.18.1.1 broadcast C7505-7a(config-if-atm-vc)#^Z C7505-7a# 

You should have IP connectivity across your ATM SVC. We use the ping command as shown in Example 10-56. The first ping is lost because of the SVC setup.

Example 10-56. Using IP PING to Check Connectivity
 C7505-7a#ping 172.18.1.1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.18.1.1, timeout is 2 seconds: .!!!! Success rate is 80 percent (4/5), round-trip min/avg/max = 8/9/12 ms C7505-7a#sh atm vc            VCD /                                        Peak  Avg/Min Burst Interface  Name         VPI   VCI  Type   Encaps   SC   Kbps   Kbps   Cells  Sts 0/0        Sig            0     5  PVC    SAAL     VBR  149760   2000    16   UP 0/0        ILMI           0    16  PVC    ILMI     VBR    1498   1498    16   UP 0/0.10     SVC_test       0    37  SVC    SNAP     VBR     477    238   128   UP C7505-7a# 

You can see this SVC from the PNNI control plane (SES or PXM-45) using the command dsppncons, as shown in Example 10-57. With this command, you can see the calling and called addresses as well as cross-connect details. This command displays cross-connect port, VPI, and VCI information, not end-to-end values. In the BPX-SES, pnport 12.2 is used as the UNI link connected to the router, and pnport 4.3 is a PNNI link toward the MGX-8850.

Example 10-57. Displaying SVC Connections from the PNNI Controller
 SES-3a.1.PXM.a > dsppncons            Port   VPI   VCI  CallRef:Flag        X-Port    VPI   VCI  CallRef:Flag   Type OAM-Type  Pri             4.3     0    42        6: 1            12.2      0    37        1: 0   PTP    No     8     Calling-Addr: 47.000000000000010002008850.00000c750501.01     Called-Addr: 47.000000000000010001008600.00000c750701.01            12.2     0    37        1: 0             4.3      0    42        6: 1   PTP    Yes    8     Calling-Addr: 47.000000000000010002008850.00000c750501.01     Called-Addr: 47.000000000000010001008600.00000c750701.01 SES-3a.1.PXM.a > 

The command dsppncon displays more details regarding the cross-connect, as shown in Example 10-58.

Example 10-58. Using dsppncon to See Call Details
 SES-3a.1.PXM.a > dsppncon 12.2 0 37  CallRef:        1  CallRefFlag:   0  CallLeafRef :        0  Calling-address: 47.000000000000010002008850.00000c750501.01   <= Cisco 7505 to    MGX-8850  Calling-subaddress #1: N/A  Calling-subaddress #2: N/A  Called-address: 47.000000000000010001008600.00000c750701.01    <= Cisco 7507 to    BPX-SES  Called-subaddress #1: N/A  Called-subaddress #2: N/A  OE Port :            4.3 OE VPI :      0  OE VCI :     42  OE CallRef:        6  OE CallRefFlag:   1  OAM-Type : OAM Endpoint  Routing Priority : 8  Connection-type : SVC   Cast-type : point-to-point   Bearer-class :BCOBX  Service-category :VBR-NRT   Call-clipping-susceptibility:no  Tx conformance :VBR.1  Rx conformance :VBR.1  Tx pcr :       1208           Rx pcr :       1208  Tx scr :    604 Rx scr :    604  Tx Per Util :   100           Rx Per Util :   100  Tx mbs :      0 Rx mbs :      0  Tx cdvt : 250000  Tx frame-discard-option :enable  Rx frame-discard-option :enable Type <CR> to continue, Q<CR> to stop:  Max ctd :    N/A  Max Tx cdv :    N/A    Max Rx cdv :    N/A  Max Tx clr :    N/A    Max Rx clr :    N/A  NCCI value: no record found SES-3a.1.PXM.a > 

One difference between router and switch configuration is the units in which traffic parameters are specified. In particular, router traffic rates are specified in kilobits per second (Kbps), and switch traffic rates are given in cells per second (CPS). The relationship between both units is shown in Equation 10-1.

Equation 10-1 Relationship Between Kbps and CPS


Using the formula shown in Equation 10-1, Table 10-3 shows the values used in the SVC. The Kbps are configured in the router, and the CPS are signaled in the PNNI information elements. On a router, rates are always configured in Kbps; however, the ATM traffic descriptor information element (Q.2931, Section 4.5.6) specifies rates in CPS.

Table 10-3. Rate Parameters in Kbps and CPS

SVC Parameter

Kbps

CPS

PCR

512

1208

SCR

256

604


SPVCs

For the SPVC provisioning, you use the network configuration shown in Figure 10-12. For SPVC configuration, multipoint ATM subinterfaces .20 are used in the routers. The IP subnetwork to be configured in the SPVC scenarios is 172.18.2.0/24.

Figure 10-12. Network Setup for SPVCs


As we will detail, the CPE segment of SPVCs is permanent. From the router's perspective, you configure a PVC (see Example 10-59). You use 1000 CPS in the network. That corresponds to 424 Kbps in the router using the formula shown in Equation 10-1.

Example 10-59. CPE Configuration for SPVCs
 C7507-1a(config)#interface ATM 6/0.20 multipoint C7507-1a(config-subif)#description Subinterface for SPVCs towards BPX-SES switch. C7507-1a(config-subif)#ip address 172.18.2.1 255.255.255.0 C7507-1a(config-subif)#pvc PVC_test 100/100 C7507-1a(config-if-atm-vc)#protocol ip 172.18.2.2 broadcast C7507-1a(config-if-atm-vc)#oam-pvc manage C7507-1a(config-if-atm-vc)#cbr 424 

On the network, you configure a dual-endpoint SPVC. A dual-endpoint SPVC has a master endpoint and a slave persistent endpoint. The master endpoint is responsible for originating the SPVC call. Some of the advantages of a dual-endpoint SPVC model, such as slave endpoint alarm indication and slave port load model, are described in the later section "Notes on SPVCs."

You start by configuring a slave SPVC endpoint, as shown in Example 10-60.

Example 10-60. Configuring a Slave SPVC Endpoint from the Controller
 SES-3a.1.PXM.a > addcon 12.2 100 100 1 2 -lpcr 1000 -rpcr 1000 LOCAL ADDR: 470000000000000100010086000000000C020000.100.100 SES-3a.1.PXM.a > 

The output of this command is the endpoint identifier formed with the port's AESA SPVC endpoint plus VPI and VCI values. This output is used in the master endpoint addcon.

You can display the AESA SPVC endpoint using the command dspspvcaddr. See Example 10-61.

Example 10-61. Displaying the AESA SPVC Endpoint
 SES-3a.1.PXM.a > dspspvcaddr Interface Id      Soft VC Address(es) ------------      -------------------         11.2     47.0000.0000.0000.0100.0100.8600.0000.000b.0200.00         12.2     47.0000.0000.0000.0100.0100.8600.0000.000c.0200.00          4.3     47.0000.0000.0000.0100.0100.8600.0000.0004.0300.00 SES-3a.1.PXM.a > 

These SPVC AESAs are formed by prepending the SPVC prefix to 2 bytes equal to 0 plus the LIN for the VSI slave in hexadecimal format and a selector of 0 (see Figure 10-13).

Figure 10-13. SPVC Endpoint AESA


You can now configure the SPVC master endpoint in the MGX-8850 PNNI node. This configuration is performed in the AXSM card, as shown in Example 10-62.

Example 10-62. Creating a Master SPVC Endpoint in the MGX-8850
 m8850-7a.2.AXSM.a > addcon 1 100 100 1 1 -slave   470000000000000100010086000000000C020000.100.100 -lpcr 1000 -rpcr 1000 master endpoint added successfully master endpoint id : 4700000000000001000200885000000102180100.100.100 m8850-7a.2.AXSM.a > And we can check the AXSM connection endpoints. m8850-7a.2.AXSM.a > dspcons record    Identifier   Type   SrvcType   M/S    Upld    Admn   Alarm ------    ----------   ----   --------   ---    ----    ----   -----     0  01 0100 00100   VCC        cbr1   M   013d4b18     UP      none m8850-7a.2.AXSM.a > dspvsicons  LCN   Type     lLin    lVpi  lVci   rLin    rVpi  rVci  cksmVal  pCref ======================================================================== 00003 s/svc    01021801 0000 000005 01073b22 0001 000041 030d546c 0000 00004 p/spvc   01021801 0100 000100 01011802 0000 000043 00481867 0000 m8850-7a.2.AXSM.a > 

NOTE

It is important to note that ILMI connection using VPI/VCI = 0/16 is not displayed in the output of the command dspvsicons. This is because it is not a connection set up by VSI. It is configured directly by slave platform software because of ILMI's distributed nature. ILMI messages are extended to the VSI master using VSI protocol passthrough.


You also can check the SPVC from the control plane, as shown in Example 10-63. That would be a PXM-45 card in the MGX-8850 PNNI node and SES in the BPX-SES PNNI node.

Example 10-63. Displaying SPVC Information from the Controller
 m8850-7a.7.PXM.a > dspcons Local Port   Vpi.Vci    Remote Port  Vpi.Vci     State     Owner  Pri Persistency ----------------------+------------------------+---------+-------+---+----------- 2:1.1:1      100 100    Routed       100 100     OK        MASTER 8   Persistent Local  Addr: 47.000000000000010002008850.000001021801.00 Remote Addr: 47.000000000000010001008600.0000000c0200.00 Preferred Route ID:- m8850-7a.7.PXM.a > 

Because the remote port resides in a remote node, the remote port is displayed as routed for a successful call. You can see the local cross-connect information using the command dsppncons, as shown in Example 10-64.

Example 10-64. Displaying PNNI Node Cross-Connects
 SES-3a.1.PXM.a > dsppncons            Port   VPI   VCI  CallRef:Flag        X-Port    VPI   VCI  CallRef:Flag   Type OAM-Type  Pri             4.3     0    43        7: 1            12.2    100   100        1: 0   PTP    No     8     Calling-Addr: 47.000000000000010002008850.000001021801.00     Called-Addr: 47.000000000000010001008600.0000000c0200.00            12.2   100   100        1: 0             4.3      0    43        7: 1   PTP    No     8     Calling-Addr: 47.000000000000010002008850.000001021801.00     Called-Addr: 47.000000000000010001008600.0000000c0200.00 SES-3a.1.PXM.a > 

Finally, you configure the other end's CPE, and you have IP connectivity. See Example 10-65.

Example 10-65. Configuring the Rremote CPE for SPVCs
 C7505-7a(config)#interface ATM 0/0.20 multipoint C7505-7a(config-subif)#description Subinterface for SPVCs towards MGX-8850 switch. C7505-7a(config-subif)#ip address 172.18.2.2 255.255.255.0 C7505-7a(config-subif)#pvc PVC_test 100/100 C7505-7a(config-if-atm-vc)#protocol ip 172.18.2.1 broadcast C7505-7a(config-if-atm-vc)#oam-pvc manage C7505-7a(config-if-atm-vc)#cbr 424 C7505-7a(config-if-atm-vc)#^Z C7505-7a#ping 172.18.2.1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.18.2.1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms C7505-7a# 

In the SPVC case, the first ping does not fail because the SPVC was already signaled and set up in the PNNI network.

SPVCs Using RPM-PR as CPE

Figure 10-14 shows the setup using an RPM-PR card as CPE for SPVC endpoints in the MGX-8850-based PNNI node. The RPM-PR card currently does not support SVCs, only PVC and SPVC endpoints.

Figure 10-14. Network Setup for SPVCs Using RPM-PR


You configure a new PVC in the Cisco 7507 SPVC subinterface with the corresponding Layer 3 mapping (see Example 10-66). A variable bit rate (VBR-NRT) PVC is configured with a Peak Cell Rate (PCR) of 25,000 Kbps, a Sustained Cell Rate (SCR) of 15,000 Kbps, and a Maximum Burst Size (MBS) of 1000 cells.

Example 10-66. Configuring the CPE for a New SPVC
 C7507-1a#conf t Enter configuration commands, one per line.  End with CNTL/Z. C7507-1a(config)#interface ATM 6/0.20 C7507-1a(config-subif)#pvc PVC_RPM 100/200 C7507-1a(config-if-atm-vc)#protocol ip 172.18.2.3 broadcast C7507-1a(config-if-atm-vc)#oam-pvc manage C7507-1a(config-if-atm-vc)#vbr-nrt 25000 15000 1000^Z C7507-1a# 

You can perform the RPM-PR configuration. First of all, the RPM-PR internal ATM port must be seen from the PNNI control plane. To achieve that, you need to configure a resource partition in the RPM-PR's switch interface that is managed from the PXM-45 proxy VSI slave. Refer to Example 10-67. You create a VCC resource partition using controller-id 2, in which you configure the VPI and VCI ranges and guaranteed and maximum bandwidth.

Example 10-67. Creating an RPM-PR VSI Resource Partition
 RPM_10_8850#conf t RPM_10_8850(config)#interface switch 1 RPM_10_8850(config-if)#switch partition vcc 1 2 RPM_10_8850(config-if-swpart)#vpi 0 0 RPM_10_8850(config-if-swpart)#vci 32 3808 RPM_10_8850(config-if-swpart)#ingress-percentage-bandwidth 100 100 RPM_10_8850(config-if-swpart)#egress-percentage-bandwidth 100 100 RPM_10_8850(config-if-swpart)#exit 

With this configuration, the pnport and corresponding SPVC AESA are visible from the PNNI control plane. See Example 10-68.

Example 10-68. Displaying the RPM-PR SPVC Endpoint AESA
 m8850-7a.7.PXM.a > dspspvcaddr Interface Id      Soft VC Address(es) ------------      -------------------      1:1.2:2     47.0000.0000.0000.0100.0200.8850.0000.0101.1802.00      2:1.1:1     47.0000.0000.0000.0100.0200.8850.0000.0102.1801.00         7.36     47.0000.0000.0000.0100.0200.8850.0000.0107.3b24.00         7.37     47.0000.0000.0000.0100.0200.8850.0000.0107.3b25.00         7.38     47.0000.0000.0000.0100.0200.8850.0000.0107.3b26.00         7.35     47.0000.0000.0000.0100.0200.8850.0000.0107.3b23.00         10.1     47.0000.0000.0000.0100.0200.8850.0000.0107.5301.00     12:1.1:1     47.0000.0000.0000.0100.0200.8850.0000.010c.1801.00 m8850-7a.7.PXM.a > 

The RPM SPVC AESA is formed with the MGX-8850 SPVC prefix, the PnPort LIN in hexadecimal, and a selector of 0, as shown in Figure 10-15.

Figure 10-15. RPM-PR SPVC AESA


Now you configure a multipoint subinterface for SPVCs with its IP address and ATM PVC (see Example 10-69). The ATM PVC is configured with the same traffic characteristics as the previous one.

Example 10-69. Configuring the RPM-PR for SPVCs
 RPM_10_8850(config)#interface switch 1.20 multipoint RPM_10_8850(config-subif)#description Subinterface for SPVCs. RPM_10_8850(config-subif)#ip address 172.18.2.3 255.255.255.0 RPM_10_8850(config-subif)#pvc 0/100 RPM_10_8850(config-if-atm-vc)#oam-pvc manage RPM_10_8850(config-if-atm-vc)#protocol ip 172.18.2.1 RPM_10_8850(config-if-atm-vc)#encapsulation aal5snap RPM_10_8850(config-if-atm-vc)#vbr-nrt 25000 15000 1000 RPM_10_8850(config-if-atm-vc)#exit 

At this point, the CPEs are configured for SPVCs, and you need to configure the SPVC in the network. To do that, you start by configuring the RPM-PR switch connection that is the MGX-8850 PNNI node's SPVC endpoint. The remote AESA is the BPX-SES SPVC AESA for port 12.2. See Example 10-70.

Example 10-70. Configuring a Slave SPVC Connection Endpoint in an RPM-PR
 RPM_10_8850(config-subif)#switch connection vcc 0 100 master remote raddr ?   XX.XXXX. ... .XXX.XX  remote NSAP address RPM_10_8850(config-subif)#$0000.0100.0100.8600.0000.000c.0200.00 100 200 RPM_10_8850(config-if-swconn)#^Z RPM_10_8850# 

You configure the RPM-PR SPVC endpoint as a slave endpoint with the parameter master remote in the switch connection command. As shown in Example 10-71, the SPVC endpoint appears in the PNNI control plane.

Example 10-71. The RPM-PR SPVC Endpoint from the Control Plane
 m8850-7a.7.PXM.a > dspcon 10.1 0 100 Port                   Vpi Vci             Owner      State      Persistency ---------------------------------------------------------------------------- Local  10:-1.1:-1      0.100               SLAVE      FAIL       Persistent        Address: 47.000000000000010002008850.000001075301.00        Node name: m8850-7a Remote Routed          0.0                 MASTER      --        Persistent        Address: 00.000000000000000000000000.000000000000.00        Node name: -------------------- Provisioning Parameters -------------------- Connection Type: VCC          Cast Type: Point-to-Point Service Category: nrt-VBR     Conformance: nrt-VBR.3 Bearer Class: BCOB-X Last Fail Cause: N/A                              Attempts: 0 Continuity Check: Disabled    Frame Discard: Disabled L-Utils: 100   R-Utils: 100   Max Cost: 0     Routing Cost: 0 OAM Segment Ep: Enabled Priority: - ---------- Traffic Parameters ---------- Values: Configured (Signalled) Tx PCR:  58963     (-)     Rx PCR:  58963     (-) Type <CR> to continue, Q<CR> to stop: Tx SCR:  35378     (-)     Rx SCR:  35378     (-) Tx MBS:  1000      (-)     Rx MBS:  1000      (-) Tx CDVT: 250000    (-) Tx CDV:  N/A            Rx CDV:  N/A Tx CTD:  N/A            Rx CTD:  N/A -------------------- Preferred Route Parameters------------------ Preferred Route ID: - Currently on preferred route: N/A m8850-7a.7.PXM.a > 

From the dspcon output, you can see that the remote information is still empty because it has not yet been configured. No attempts have been made to set up the SPVC because this is the slave endpoint.

From the same output, you can also verify the relationship between units expressed in Kbps and CPS. As you know, you configured the SPVC endpoint with a PCR = 25,000 Kbps and an SCR of 15,000 Kbps. Using the formula shown in Equation 10-1, the values expressed in CPS are PCR = 58,963 CPS and SCR = 35,378 CPS. These values in CPS are shown in the dspcon command output.

To conclude, you configure the master SPVC endpoint with traffic parameters matching the aforementioned values and expressed in CPS, as shown in Example 10-72. For the SPVC call to connect, all QoS and traffic parameters need to match in both ends.

Example 10-72. Adding the Master SPVC Endpoint
 SES-3a.1.PXM.a > addcon 12.2 100 200 7 1   4700000000000001000200885000000107530100.0.100 -lpcr 58963 -lscr 35378 -lmbs   1000 -rpcr 58963 -rscr 35378 -rmbs 1000 SES-3a.1.PXM.a > 

You can see that the connection establishment is successful in Example 10-73.

Example 10-73. Displaying SPVC Connections and Checking Their Status
 m8850-7a.7.PXM.a > dspcons Local Port   Vpi.Vci    Remote Port  Vpi.Vci     State     Owner  Pri Persistency ----------------------+------------------------+---------+-------+---+----------- 10.1           0 100    Routed       100 200     OK        SLAVE  -   Persistent Local  Addr: 47.000000000000010002008850.000001075301.00 Remote Addr: 47.000000000000010001008600.0000000c0200.00 Preferred Route ID:- 2:1.1:1      100 100    Routed       100 100     OK        MASTER 8   Persistent Local  Addr: 47.000000000000010002008850.000001021801.00 Remote Addr: 47.000000000000010001008600.0000000c0200.00 Preferred Route ID:- m8850-7a.7.PXM.a > 

Furthermore, as shown in Example 10-74, you have IP connectivity.

Example 10-74. Checking IP Connectivity Through the SPVC
 C7507-1a#ping 172.18.2.3 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.18.2.3, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms C7507-1a# 

Using the command dsppncons, you can see the cross-connecting port, VPI, and VCI, as shown in Example 10-75.

Example 10-75. Displaying PNNI Node Cross-Connects
 m8850-7a.7.PXM.a > dsppncons            Port   VPI   VCI  CallRef:Flag        X-Port    VPI   VCI   CallRef:Flag  Type OAM-Type  Pri            10.1     0   100       10: 0         1:1.2:2      0    54   12: 1     PTP    No     8     Calling-Addr: 47.000000000000010001008600.0000000c0200.00     Called-Addr: 47.000000000000010002008850.000001075301.00 ... 

You can also see that the calling address is the BPX-SES SPVC AESA. This is because the BPX-SES endpoint was configured as the master connection endpoint. To revisit this concept, the connection endpoint configured as master is responsible for initializing the connection setup.




Cisco Multiservice Switching Networks
Cisco Multiservice Switching Networks
ISBN: 1587050684
EAN: 2147483647
Year: 2002
Pages: 149

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net