data mining: opportunities and challenges
Chapter XI - Bayesian Data Mining and Knowledge Discovery
Data Mining: Opportunities and Challenges
by John Wang (ed) 
Idea Group Publishing 2003
Brought to you by Team-Fly

Cox, R. T. (1946). Probability, frequency and reasonable expectation. Ameri can Journal of Physics, 14:1 13.

DeGroot, M. (1986). Probability and statistics. Reading, MA: Addison Wesley.

Dougherty, J., Kohavi, R., Sahami, M. & (1995). Supervised and unsupervised discretization of continuous features, In A. Prieditis and S.Russell (eds.), Proceedings of the Twelfth International Conference on Machine Learning, pp. 194 202. San Francisco, CA: Morgan Kaufmann.

Friedman, N.Goldzmidt,M. & (1999). Learning Bayesian networks with local structure. In M.I. Jordan (ed.), Learning in graphical models. Cambridge, MA: MIT Press.

Friedman, N., Geiger, D., Goldszmidt, M. & (1997). Bayesian network classifiers. Machine Learning, 29:131 163.

Gelman, A., Carlin, J., Stern, H., Rubin, D. & (1995). Bayesian Data Analysis, Chapman & Hall/CRC.

Heckerman, D., Geiger, D., Chickering, D. & (1994). Learning Bayesian networks: The combination of knowledge and statistical data. Technical Report MSR-TR-94-09, Microsoft Research.

Janes, E.T. (1996). Probability theory: The logic of science, Fragmentary Edition. Available online at:

Joachims, T. (1996). A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. Technical Report CMU-CS-96-118, School of Computer Science, Carnegie Mellon University, March.

Kohavi, R., Becker, B., Sommerfield, D. & (1997). Improving simple Bayes. ECML-97: Proceedings of the Ninth European Conference on Machine Learning.

Lam, W.Bachus, F. & (1994). Learning Bayesian networks: An approach based on the MDL principle Computational Intelligence 10(3), 269 293.

Lauritzen, S. L.Spiegelhalter. D. J. & (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B, 50(2):157 224.

Mitchell. T. (1997). Machine learning. New York: McGraw-Hill.

Neal, R. M. (1993). Probabilistic inference using Markov Chain Monte Carlo Methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA: Morgan Kaufmann.

Ramoni, M.Sebastiani, P. & (1999). Bayesian methods for intelligent data analysis. In M. Berthold & D.J. Hand, (eds.), Intelligent data analysis: An introduction. New York: Springer-Verlag.

Rodriguez, C. (1999). An introduction to Markov Chain Monte Carlo. Available online at:

Sivia, D. (1996). Data analysis: A Bayesian tutorial. Oxford, UK: Oxford Science Publications.

Van der Gaag, L.C. (1996). Bayesian belief networks: Odds and ends. Technical Report UU-Cs-1996-14, Utretch University.

Witten, I.Frank, E. & (2000). Data mining: Practical machine learning tools and techniques with Java implementations. San Mateo, CA: Morgan Kaufmann.

Brought to you by Team-Fly

Data Mining(c) Opportunities and Challenges
Data Mining: Opportunities and Challenges
ISBN: 1591400511
EAN: 2147483647
Year: 2003
Pages: 194
Authors: John Wang © 2008-2017.
If you may any questions please contact us: