Section 10.3. Implementation


10.3. Implementation

10.3.1. NetWare Migration Using LDAP Backend

The following software must be installed on the SUSE Linux Enterprise Server to perform this migration:


  courier-imap
  courier-imap-ldap
  nss_ldap
  openldap2-client
  openldap2-devel (only for Samba compilation)
  openldap2
  pam_ldap
  samba-3.0.20 or later
  samba-client-3.0.20 or later
  samba-winbind-3.0.20 or later
  smbldap-tools Version 0.9.1

Each software application must be carefully configured in preparation for migration. The configuration files used at Abmas are provided as a guide and should be modified to meet needs at your site.

10.3.1.1 LDAP Server Configuration

The /etc/openldap/slapd.conf file Misty used is shown here:

#/etc/openldap/slapd.conf # # See slapd.conf(5) for details on configuration options. # This file should NOT be world readable. # include   /etc/openldap/schema/core.schema include   /etc/openldap/schema/cosine.schema include   /etc/openldap/schema/inetorgperson.schema include   /etc/openldap/schema/nis.schema include   /etc/openldap/schema/samba3.schema include   /etc/openldap/schema/dhcp.schema include   /etc/openldap/schema/misc.schema include   /etc/openldap/schema/idpool.schema include   /etc/openldap/schema/eduperson.schema include   /etc/openldap/schema/commURI.schema include   /etc/openldap/schema/local.schema include   /etc/openldap/schema/courier.schema pidfile   /var/run/slapd/run/slapd.pid argsfile  /var/run/slapd/run/slapd.args replogfile /data/ldap/log/slapd.replog # Load dynamic backend modules: modulepath /usr/lib/openldap/modules ####################################################################### # Logging parameters ####################################################################### loglevel 256 ####################################################################### # SASL and TLS options ####################################################################### sasl-host     ldap.corp.abmas.org sasl-realm    DIGEST-MD5 sasl-secprops   none TLSCipherSuite HIGH:MEDIUM:+SSLV2 TLSCertificateFile    /etc/ssl/certs/private/abmas-cert.pem TLSCertificateKeyFile /etc/ssl/certs/private/abmas-key.pem password-hash   {SSHA} defaultsearchbase "dc=abmas,dc=biz" ####################################################################### # bdb database definitions ####################################################################### database          bdb suffix            "dc=abmas,dc=biz" rootdn            "cn=manager,dc=abmas,dc=biz" rootpw            {SSHA}gdo/dUvoT4ZJmULz3rUt6A3H/hBEduJ5 directory         /data/ldap mode    0600 # The following is for BDB to make it flush its data to disk every # 500 seconds or 5kb of data checkpoint 500 5 ## For running slapindex #readonly on ## Indexes for often-requested attributes index   objectClass             eq index   cn                      eq,sub index   sn                      eq,sub index   uid                     eq,sub index   uidNumber               eq index   gidNumber               eq index   sambaSID                eq index   sambaPrimaryGroupSID    eq index   sambaDomainName         eq index   default                 sub cachesize 2000 replica         host=baa.corp.abmas.org:389                 suffix="dc=abmas,dc=biz"                 binddn="cn=replica,dc=abmas,dc=biz"                 credentials=verysecret                 bindmethod=simple                 tls=yes replica         host=ns.abmas.org:389                 suffix="dc=abmas,dc=biz"                 binddn="cn=replica,dc=abmas,dc=biz"                 credentials=verysecret                 bindmethod=simple                 tls=yes ####################################################################### # ACL section ####################################################################### ## MOST RESTRICTIVE RULES MUST GO FIRST! # Admins get access to everything. This way I do not have to rename. access to *   by group/groupOfUniqueNames/uniqueMember="cn=LDAP Administrators,ou=groups,dc=abmas,dc=biz" write   by * break ## Users can change their own passwords. access to attrs=userPassword,sambaNTPassword,sambaLMPassword,sambaPwdLastSet, sambaPwdMustChange,sambaPwdCanChange   by self write   by * auth ## Home contact info restricted to the logged-in user and the HR dept access to attrs=hometelephoneNumber,homePostalAddress, mobileTelephoneNumber,pagerTelephoneNumber   by group/groupOfUniqueNames/uniqueMember="cn=hr_admin, ou=groups,dc=abmas,dc=biz" write   by self write   by * none ## Everyone can read email aliases access to dn.sub="ou=Email Aliases,dc=abmas,dc=biz"   by * read ## Only admins can manage email aliases ## If someone is the role occupant of an alias they can change it -- this ## is accomplished by the "organizationalRole" objectclass and is ## pretty cool -- like a groupOfUniqueNames but for individual ## users. access to dn.children="ou=Email Aliases,dc=abmas,dc=biz"   by dnattr=roleOccupant write   by * read ## Admins and HR can add and delete users access to dn.sub="ou=people,dc=abmas,dc=biz"   by group/groupOfUniqueNames/uniqueMember="cn=hr_admin, ou=groups,dc=abmas,dc=biz" write   by * read ## Admins and HR can add and delete bizputers access to dn.sub="ou=bizputers,dc=abmas,dc=biz"   by group/groupOfUniqueNames/uniqueMember="cn=hr_admin, ou=groups,dc=abmas,dc=biz" write   by * read ## Admins and HR can add and delete groups access to dn.sub="ou=groups,dc=abmas,dc=biz"   by group/groupOfUniqueNames/uniqueMember="cn=hr_admin, ou=groups,dc=abmas,dc=biz" write   by * read ## This is used to quickly deactivate any LDAP object only ## Admins have access. access to dn.sub="ou=inactive,dc=abmas,dc=biz"   by * none ## This is for programs like Windows Address Book that can ## detect the default search base. access to attrs=namingcontexts,supportedControl   by anonymous =cs   by * read ## Default to read-only access access to *   by dn.base="cn=replica,ou=people,dc=abmas,dc=biz" write   by * read 

The /etc/ldap.conf file used is listed in Example 10.3.1.

Example 10.3.1. NSS LDAP Control File /etc/ldap.conf
# /etc/ldap.conf # This file is present on every *NIX client that authenticates to LDAP. # For me, most of the defaults are fine. There is an amazing amount of # customization that can be done see the man page for info. # Your LDAP server. Must be resolvable without using LDAP. The following # is for the LDAP server all others use the FQDN of the server URI ldap://127.0.0.1 # The distinguished name of the search base. base ou=corp,dc=abmas,dc=biz # The LDAP version to use (defaults to 3 if supported by client library) ldap_version 3 # The distinguished name to bind to the server with if the effective # user ID is root. Password is stored in /etc/ldap.secret (mode 600) rootbinddn cn=Manager,dc=abmas,dc=biz # Filter to AND with uid=%s pam_filter objectclass=posixAccount # The user ID attribute (defaults to uid) pam_login_attribute uid # Group member attribute pam_member_attribute memberUID # Use the OpenLDAP password change # extended operation to update the password. pam_password exop # OpenLDAP SSL mechanism # start_tls mechanism uses the normal LDAP port, LDAPS typically 636 ssl start_tls tls_cacertfile /etc/ssl/certs/private/abmas-cert.pem ... 

The NSS control file /etc/nsswitch.conf has the following contents:

# /etc/nsswitch.conf # This file controls the resolve order for system databases. # the following two lines obviate the "+" entry in /etc/passwd and /etc/group. passwd:   compat ldap group:    compat ldap # The above are all that I store in LDAP at this point. There are # possibilities to store hosts, services, ethers, and lots of other things. 

In my setup, users authenticate via PAM and NSS using LDAP-based accounts. The configuration file that controls the behavior of the PAM pam_unix2 module is shown in Example 10.3.2 file. This works out of the box with the configuration files in this chapter. It enables you to have no local accounts for users (it is highly advisable to have a local account for the root user). Traps for the unwary include the following:

  • If your LDAP database goes down, nobody can authenticate except for root.

  • If failover is configured incorrectly, weird behavior can occur. For example, DNS can fail to resolve.

I do have two LDAP slave servers configured. That subject is beyond the scope of this document, and steps for implementing it are well documented.

The following services authenticate using LDAP:


  UNIX login/ssh
  Postfix (SMTP)
  Courier-IMAP/IMAPS/POP3/POP3S

Companywide white pages can be searched using an LDAP client such as the one in the Windows Address Book.

Having gained a solid understanding of LDAP and a relatively workable LDAP tree thus far, it was time to configure Samba. I compiled the latest stable Samba and also installed the latest smbldap-tools from Idealx[1].

[1] <http://idealx.com>

The Samba smb.conf file was configured as shown in Example 10.3.3.

Most of these shares are only used by one company group, but they are required because of some ancient Qbasic and Rbase applications were that written expecting their own drive letters.

Note: During the process of building the new server, I kept data files up to date with the Novell server via use of rsync. On a separate system (my workstation in fact), which could be rebooted whenever necessary, I set up a mount point to the Novell server via ncpmount. I then created a rsyncd.conf to share that mount point out to my new server, and synchronized once an hour. The script I used to synchronize is shown in Example 10.3.8. The files exclusion list I used is shown in Example 10.3.9. The reason I had to have the rsync daemon running on a system that could be rebooted frequently is because ncpfs (part of the MARS NetWare Emulation package) has a nasty habit of creating stale mount points that cannot be recovered without a reboot. The reason for hourly synchronization is because some part of the chain was very slow and performance-heavy (whether rsync itself, the network, or the Novell server, I am not sure, but it was probably the Novell server).

Example 10.3.2. The PAM Control File /etc/security/pam_unix2.conf
# pam_unix2 config file # # This file contains options for the pam_unix2.so module. # It contains a list of options for every type of management group, # which will be used for authentication, account management and # password management. Not all options will be used from all types of # management groups. # # At first, pam_unix2 will read this file and then uses the local # options. Not all options can be set her global. # # Allowed options are: # # debug                 (account, auth, password, session) # nullok                (auth) # md5                   (password / overwrites /etc/default/passwd) # bigcrypt              (password / overwrites /etc/default/passwd) # blowfish              (password / overwrites /etc/default/passwd) # crypt_rounds=XX # none                  (session) # trace                 (session) # call_modules=x,y,z    (account, auth, password) # # Example: # auth:         nullok # account: # password:     nullok blowfish crypt_rounds=8 # session:      none # auth: use_ldap account: use_ldap password: use_ldap session: none 

After Samba was configured, I initialized the LDAP database. The first thing I had to do was store the LDAP password in the Samba configuration by issuing the command (as root):

root#   smbpasswd -w verysecret 

where "verysecret" is replaced by the LDAP bind password.

Example 10.3.3. Samba Configuration File smb.conf Part A
# Global parameters  [global]         workgroup = MEGANET2         netbios name = MASSIVE         server string = Corp File Server         passdb backend = ldapsam : ldap : //localhost         pam password change = Yes         username map = /etc/samba/smbusers         log level = 1         log file = /data/samba/log/%m. log         name resolve order = wins host bcast         time server = Yes         printcap name = cups         show add printer wizard = No         cups options = Raw         add user script = /opt/IDEALX/sbin/smbldapuseradd m "%u"         add group script = /opt/IDEALX/sbin/smbldapgroupadd p "%g"         add user to group script = /opt/IDEALX/sbin/smbldapgroupmod m "%u" "%g"         delete user from group script = /opt/IDEALX/sbin/smbldap groupmod x "%u" "%g"         set primary group script = /opt/IDEALX/sbin/smbldapusermod g "%g" "%u"         add machine script = /usr/local/sbin/smbldapuseradd w "%m"         logon script = logon.bat         logon path = \\%L\ profiles \%U\%a         logon drive = H:         logon home = \\%L\%U         domain logons = Yes         wins support = Yes         ldap admin dn = cn=Manager, dc=abmas, dc=biz         ldap group suffix = ou=Groups         ldap idmap suffix = ou=People         ldap machine suffix = ou=People         ldap passwd sync = Yes         ldap suffix = ou=MEGANET2, dc=abmas, dc=biz         ldap ssl = no         ldap user suffix = ou=People         admin users = root, "@Domain Admins"         printer admin = "@Domain Admins"         force printername = Yes 

Example 10.3.4. Samba Configuration File smb.conf Part B
[netlogon]         comment = Network logon service         path = /data/samba/netlogon         write list = "@Domain Admins"         guest ok = Yes  [profiles]         comment = Roaming Profile Share         path = /data/samba/profiles/         read only = No         profile acls = Yes         veto files = desktop.ini         browseable = No  [homes]         comment = Home Directories         valid users = %S         read only = No         create mask = 0770         veto files = desktop.ini         hide files = desktop.ini         browseable = No  [software]         comment = Software for %a computers         path = /data/samba/shares /software/%a         guest ok = Yes  [public]         comment = Public Files         path = /data/samba/shares /public         read only = No         guest ok = Yes  [PDF]         comment = Location of documents printed to PDFCreator printer         path = /data/samba/shares /pdf         guest ok = Yes 

Note

The Idealx smbldap-tools package can be configured using a script called configure.pl that is provided as part of the tool. See Chapter 5, "Making Happy Users" for an example of its use. Many administrators, like Misty, choose to do this manually so as to maintain greater awareness of how the tool-chain works and possibly to avoid undesirable actions from occurring unnoticed.



Example 10.3.5. Samba Configuration File smb.conf Part C

[View full width]

[EVERYTHING] comment = All shares path = /data/samba valid users = "@Domain Admins" read only = No [CDROM] comment = CDROM on MASSIVE path = /mnt guest ok = Yes [print$] comment = Printer Drivers Share path = /data/samba/drivers write list = root browseable = No [printers] comment = All Printers path = /data/samba/spool create mask = 0644 printable = Yes browseable = No [acct_hp8500] comment = "Accounting Color Laser Printer" path = /data/samba/spool/private valid users = @acct, @acct_admin, @hr, "@Domain Admins", @Receptionist, dwayne, terri, danae, jerry create mask = 0644 printable = Yes copy = printers [plotter] comment = Engineering Plotter path = /data/samba/spool create mask = 0644 printable = Yes use client driver = Yes copy = printers

Now Samba was ready for use and it was time to configure the smbldap-tools. There are two relevant files, which are usually put into the directory /etc/smbldap-tools. The main file, smbldap.conf is shown in Example 10.3.10.

Note: I chose not to take advantage of the TLS capability of this. Eventually I may go back and tweak it. Also, I chose not to take advantage of the master/slave configuration as I heard horror stories that it was unstable. My slave servers are replicas only.

The /etc/smbldap-tools/smbldap_bind.conf file is shown here:

# smbldap_bind.conf 

Example 10.3.6. Samba Configuration File smb.conf Part D
[APPS]         path = /data/samba/shares/Apps         force group = "Domain Users"         read only = No  [ACCT]         path = /data/samba/shares/Accounting         valid users = @acct, "@Domain Admins"         force group = acct         read only = No         create mask = 0660         directory mask = 0770  [ACCT_ADMIN]         path = /data/samba/shares/Acct_Admin         valid users = @ â acct_adminâ         force group = acct_admin  [HR_PR]         path = /data/samba/shares/HR_PR         valid users = @hr, @acct_admin         force group = hr  [ENGR]         path = /data/samba/shares/Engr         valid users = @engr, @ receptionist, @truss, "@Domain Admins", cheri         force group = engr         read only = No         create mask = 0770  [DATA]         path = /data/samba/shares/DATA         valid users = @engr, @ receptionist, @truss, "@Domain Admins", cheri         force group = engr         read only = No         create mask = 0770         copy = engr 

# # This file simply tells smbldap-tools how to bind to your LDAP server. # It has to be a DN with full write access to the Samba portion of # the database. ############################ # Credential Configuration # ############################ # Notes: you can specify two different configurations if you use a # master ldap for writing access and a slave ldap server for reading access # By default, we will use the same DN (so it will work for standard Samba # release) slaveDN="cn=Manager,dc=abmas,dc=biz" slavePw="verysecret" masterDN="cn=Manager,dc=abmas,dc=biz" masterPw="verysecret" 

Example 10.3.7. Samba Configuration File smb.conf Part E
[X]         path = /data/samba/shares/X         valid users = @engr, @acct         force group = engr         read only = No         create mask = 0770         copy = engr  [NETWORK]         path = /data/samba/shares/network         valid users = "@Domain Users "         read only = No         create mask = 0770         guest ok = Yes  [UTILS]         path = /data/samba/shares/Utils         write list = "@Domain Admins"  [SYS]         path = /data/samba/shares/SYS         valid users = chad         read only = No         browseable = No 

The next step was to run the smbldap-populate command, which populates the LDAP tree with the appropriate default users, groups, and UID and GID pools. It creates a user called Administrator with UID=0 and GID=0 matching the Domain Admins group. This is fine because you can still log on as root to a Windows system, but it will break cached credentials if you need to log on as the administrator to a system that is not on the network.

After the LDAP database has been preloaded, it is prudent to validate that the information needed is in the LDAP directory. This can be done done by restarting the LDAP server, then performing an LDAP search by executing:

root#   ldapsearch -W -x -b "dc=abmas,dc=biz"\     -D "cn=Manager,dc=abmas,dc=biz" \    "(Objectclass=*)" Enter LDAP Password: # extended LDIF # # LDAPv3 # base <dc=abmas,dc=biz> with scope sub # filter: (ObjectClass=*) # requesting: ALL # # abmas.biz dn: dc=abmas,dc=biz objectClass: dcObject objectClass: organization o: abmas dc: abmas # People, abmas.biz dn: ou=People,dc=abmas,dc=biz objectClass: organizationalUnit ou: People # Groups, abmas.biz dn: ou=Groups,dc=abmas,dc=biz objectClass: organizationalUnit ou: Groups # Idmap, abmas.biz dn: ou=Idmap,dc=abmas,dc=biz objectClass: organizationalUnit ou: Idmap ... 

Example 10.3.8. Rsync Script
#!/bin/bash # Part 1 - rsync the Novell directories to the new server echo "#############################################" echo "New sync operation starting at 'date'" if ! pgrep -fl '^rsync\> ; then         echo "Good, no rsync is running!"   echo "Synchronizing oink to BHPRO"         rsync -av --exclude-from=/root/excludes.txt baa.corp:/BHPRO/SYS1/ /data/samba/shares/SYS1         retval=$?         [ ${retval} = 0] && echo "Sync operation completed at 'date'"         echo "Fixing permissions"         # I had a whole lot more permission-fixing stuff here. It got         # pared down as groups got moved over. The problem         # was that the way I was mounting the directory, everything         # was owned by the Novell administrator which translated to         # Root. This is also why I could only do one-way sync because         # I could not fix the ACLs on the Novell side.         find /data/samba/shares/Engr/ -perm +770 -exec chmod 770 {} \;         find /data/samba/shares/Engr/! -group engr -exec chgrp engr {} \; else         # This rsync took ages and ages -- I had it set to run every hour but         # I needed a way to prevent it running into itself.         echo "Oh no, rsync is already running!" echo "#############################################" fi 

Example 10.3.9. Rsync Files Exclusion List /root/excludes.txt
/Acct/ /Apps/ /DATA/ /Engr/*.pc3 /Engr/plotter /Engr/APPOLO/ /Engr/LIBRARY/ /Home/Accounting/ /Home/Angie/ /Home/AngieY/ /Home/Brandon/ /Home/Carl/ 

With the LDAP directory now initialized, it was time to create the Windows and POSIX (UNIX) group accounts as well as the mappings from Windows groups to UNIX groups. The easiest way to do this was to use smbldap-groupadd command. It creates the group with the posixGroup and sambaGroupMapping attributes, a unique GID, and an automatically determined RID. I learned the hard way not to try to do this by hand.

After I had my group mappings in place, I added users to the groups (the users don't really have to exist yet). I used the smbldap-groupmod command to accomplish this. It can also be done manually by adding memberUID attributes to the group entries in LDAP.

The most monumental task of all was adding the sambaSamAccount information to each already existent posixAccount entry. I did it one at a time as I moved people onto the new server, by issuing the command:

root#   smbldap-usermod -a -P username 

I completed that step for every user after asking the person what his or her current NetWare password was. The wiser way to have done it would probably have been to dump the entire database to an LDIF file. This can be done by executing:

root#   slapcat > somefile.ldif 

Then update the LDIF file created by using a Perl script to parse and add the appropriate attributes and objectClasses to each entry, followed by re-importing the entire database into the LDAP directory.

Rebuilding of the LDAP directory can be done as follows:

root#   rcldap stop root#   cd /data/ldap root#   rm *bdb _* log* root#   su - ldap -c "slapadd -l somefile.ldif" root#   rcldap start 

This can be done at any time and for any reason, with no harm to the database.

I first added a test user, of course. The LDIF for this test user looks like this, to give you an idea:

# Entry 1: cn=Test User,ou=people,ou=corp,dc=abmas,dc=biz dn:cn=Test User,ou=people,ou=corp,dc=abmas,dc=biz cn: Test User gecos: Test User gidNumber: 513 givenName: Test homeDirectory: /home/test.user homePhone: 555 l: Somewhere l: ST mail: test.user o: Corp objectClass: top objectClass: inetOrgPerson objectClass: posixAccount objectClass: sambaSamAccount postalCode: 12345 sn: User street: 10 Some St. uid: test.user uidNumber: 1074 sambaLogonTime: 0 sambaLogoffTime: 2147483647 sambaKickoffTime: 2147483647 sambaPwdCanChange: 0 displayName: Samba User sambaSID: S-1-5-21-725326080-1709766072-2910717368-3148 sambaLMPassword: 9D29C287C58448F9AAD3B435B51404EE sambaAcctFlags: [U] sambaNTPassword: D062088E99C95E37D7702287BB35E770 sambaPwdLastSet: 1102537694 sambaPwdMustChange: 1106425694 userPassword: {SSHA}UzFZ2VxRGdwUueLnTGtsTBtnsvMO1oj8 loginShell: /bin/false 

Then I went over to a spare Windows NT machine and joined it to the MEGANET2 domain. It worked, and the machine's account entry under ou=Computers looks like this:

dn:uid=w2kengrspare$,ou=Computers,ou=MEGANET2,dc=abmas,dc=biz objectClass: top objectClass: inetOrgPerson objectClass: posixAccount objectClass: sambaSamAccount cn: w2kengrspare$ sn: w2kengrspare$ uid: w2kengrspare$ uidNumber: 1104 gidNumber: 515 homeDirectory: /dev/null loginShell: /bin/false description: Computer gecos: Computer sambaSID: S-1-5-21-725326080-1709766072-2910717368-3208 sambaPrimaryGroupSID: S-1-5-21-725326080-1709766072-2910717368-2031 displayName: W2KENGRSPARE$ sambaPwdCanChange: 1103149236 sambaPwdMustChange: 2147483647 sambaNTPassword: CA199C45CB6737035DB6D9D9F6CD1834 sambaPwdLastSet: 1103149236 sambaAcctFlags: [W         ] 

So now I could log on with a test user from the machine w2kengrspare. It was all well and good, but that user was in no groups yet and so had pretty boring access. I fixed that by writing the login script! To write the login script, I used Kixtart[2] because it will work with every architecture of Windows, has an active and helpful user base, and was both easier to learn and more powerful than the standard netlogon scripts I have seen. I also did not have to do a logon script per user or per group.

[2] <http://www.kixtart.org>

I downloaded Kixtart and put the following files in my netlogon share:

KIX32.EXE KX32.dll KX95.dll  <-- Not needed unless you are running Win9x clients. kx16.dll  <-- Probably not needed unless you are running DOS clients. kxrpc.exe <-- Probably useless as it has to run on the server and can           only be run on NT.  It's for Windows 95 to become group-aware.           We can get around the need. 

I then wrote the logon.kix file that is shown in Example 10.3.14. I chose to keep it all in one file, but it can be split up and linked via include directives.

As you can see in the script, I redirected the My Documents to the user's home share if he or she were not in the Laptop group. I also added printers on a group-by-group basis, and if applicable I set the group printer. For this to be effective, the print drivers must be installed on the Samba server in the [print$] share. Ample documentation exists about how to do that, so it is not covered here.

I call this script via the logon.bat script in the [netlogon] directory:

\\corpsrv\netlogon\kix32 \\corpsrv\netlogon\logon.kix /f 

I only had to fully qualify the paths for Windows 9x, as Windows NT and greater automatically add [NETLOGON] to the path.

Also of note for Win9x is that the drive mappings and printer setup will not work because they rely on RPC. You merely have to put the appropriate settings into the c:\autoexec.bat file or map the drives manually. One option is to check the OS as part of the Kixtart script, and if it is Win9x and is the first login, copy a premade autoexec.bat to the C: drive. I have only three such machines, and one is going away in the very near future, so it was easier to do it by hand.

At this point I was able to add the users. This is the part that really falls into upgrade. I moved the users over one group at a time, starting with the people who used the least amount of resources on the network. With each group that I moved, I first logged on as a standard user in that group and took careful note of the environment, mainly the printers he or she used, the PATH, and what network resources he or she had access to (most importantly, which ones the user actually needed access to).

I then added the user's SambaSamAccount information as mentioned earlier, and join the computer to the domain. The very first thing I had to do was to copy the user's profile to the new server. This was very important, and I really struggled with the most effective way to do it. Here is the method that worked for every one of my users on Windows NT, 2000, and XP:

1.

Log in as the user on the domain. This creates the local copy of the user's profile and copies it to the server as he or she logs out.

2.

Reboot the computer and log in as the local machine administrator.

3.

Right-click My Computer, click Properties, and navigate to the user profiles tab (varies per version of Windows).

4.

Select the user's local profile (COMPUTERNAME\username), and click the Copy To button.

5.

In the next dialog, copy it directly to the profiles share on the Samba server (in my case \\PDCname\profiles\user\ <architecture>. You will have had to make a connection to the share as that user (e.g., Windows Explorer type \\PDCname\profiles\username).

6.

When the copy is complete (it can take a while) log out, and log back in as the user. All of his or her settings and all contents of My Documents, Favorites, and the registry should have been copied successfully.

7.

If it doesn't look right (the dead giveaway is the desktop background), shut down the computer without logging out (power cycle) and try logging in as the user again. If it still doesn't work, repeat the steps above. I only had to ever repeat it once.

Words to the Wise:

  • If the user was anything other than a standard user on his or her system before, you will save yourself some headaches by giving him or her identical permissions (on the local machine) as his or her domain account before copying the profile over. Do this through the User Administrator in the Control Panel, after joining the computer to the domain and before logging on as that user for the first time. Otherwise the user will have trouble with permissions on his or her registry keys.

  • If any application was installed for the user only, rather than for the entire system, it will probably not work without being reinstalled.

After all these steps are accomplished, only cleanup details are left. Make sure user's shortcuts and Network Places point to the appropriate place on the new server, check the important applications to be sure they work as expected and troubleshoot any problems that might arise, and check to be sure the user's printers are present and working. By the way, if there are any network printers installed as system printers (the Novell way), you will need to log in as a local administrator and delete them.

For my non-laptop systems, I would then log in and out a couple times as the user to be sure that his or her registry settings were modified, and then I was finished.

Some compatibility issues that cropped up included the following:

Blackberry client: It did not like having its registry settings moved around and so had to be reinstalled. Also, it needed write permissions to a portion of the hard drive, and I had to give it those manually on the one system where this was an issue.

CAMedia: Digital camera software for Canon cameras caused all kinds of trouble with the registry. I had to use the Run as service to open the registry of the local user while logged in as the domain user, and give the domain user the appropriate permissions to some registry keys, then export that portion of the registry to a file. Then, as the domain user, I had to import that file into the registry.

Crystal Reports version 7: More registry problems that were solved by recopying the user's profile.

Printing from legacy applications: I found out that Novell sends its jobs to the printer in a raw format. CUPS sends them in PostScript by default. I had to make a second printer definition for one printer and tell CUPS specifically to send raw data to the printer, then assign this printer to the LPT port with Kixtart's version of the net use command.

These were all eventually solved by elbow grease, queries to the Samba mailing list and others, and diligence. The complete migration took about 5 weeks. My userbase is relatively small but includes multiple versions of Windows, multiple Linux member servers, a mechanized saw, a pen plotter, and legacy applications written in Qbasic and R:Base, just to name a few. I actually ended up making some of these applications work better (or work again, as some of them had stopped functioning on the old server) because as part of the process I had to find out how things were supposed to work.

The one thing I have not been able to get working is a very old database that we had around for reference purposes; it uses Novell's Btrieve engine.

As the resources compare, I went from 95 percent disk usage to just around 10 percent. I went from a very high load on the server to an average load of between one and two runnable processes on the server. I have improved the security and robustness of the system. I have also implemented ClamAV[3] antivirus software, which scans the entire Samba server for viruses every 2 hours and quarantines them. I have found it much less problematic than our ancient version of Norton Antivirus Corporate Edition, and much more up-to-date.

[3] <http://www.clamav.net>

In short, my users are much happier now that the new server is running, and that is what is important to me.

Example 10.3.10. Idealx smbldap-tools Control File Part A
######### # # located in /etc/smbldap-tools/smbldap.conf # ###################################################################### # # General Configuration # ###################################################################### # Put your own SID # to obtain this number do: net getlocalsid S ###################################################################### # # LDAP Configuration # ###################################################################### # Notes: to use to dual ldap servers backend for Samba, you must patch # Samba with the dual-head patch from IDEALX. If not using this patch # just use the same server for slaveLDAP and masterLDAP. # Those two servers declarations can also be used when you have # . one master LDAP server where all writing operations must be done # . one slave LDAP server where all reading operations must be done #   (typically a replication directory) # Ex: slaveLDAP=127.0.0.1 slaveLDAP="127.0.0.1" slavePort="389" # Master LDAP : needed for write operations # Ex: masterLDAP=127.0.0.1 masterLDAP="127.0.0.1" masterPort="389" # Use TLS for LDAP # If set to 1, this option will use start_tls for connection # (you should also used the port 389) ldapTLS="0" # How to verify the server's certificate (none, optional or require) # see "man Net::LDAP" in start_tls section for more details verify="" 

Example 10.3.11. Idealx smbldap-tools Control File Part B
# CA certificate # see "man Net::LDAP" in start_tls section for more details cafile=""  certificate to use to connect to the ldap server # see "man Net::LDAP" in start_tls section for more details clientcert="" # key certificate to use to connect to the ldap server # see "man Net::LDAP" in start_tls section for more details clientkey="" # LDAP Suffix # Ex: suffix=dc=IDEALX,dc=ORG suffix="ou=MEGANET2,dc=abmas,dc=biz" # Where are stored Users # Ex: usersdn="ou=Users,dc=IDEALX,dc=ORG" usersdn="ou=People,${suffix}" # Where are stored Computers # Ex: computersdn="ou=Computers,dc=IDEALX,dc=ORG" computersdn="ou=People,${suffix}" # Where are stored Groups # Ex groupsdn="ou=Groups,dc=IDEALX,dc=ORG" groupsdn="ou=Groups,${suffix}" # Where are stored Idmap entries # (used if samba is a domain member server) # Ex groupsdn="ou=Idmap,dc=IDEALX,dc=ORG" idmapdn="ou=Idmap,${suffix}" # Where to store next uidNumber and gidNumber available sambaUnixIdPooldn="sambaDomainName=MEGANET2,${suffix}" # Default scope Used scope="sub" 

Example 10.3.12. Idealx smbldap-tools Control File Part C
# Unix password encryption (CRYPT, MD5, SMD5, SSHA, SHA) hash_encrypt="MD5" # if hash_encrypt is set to CRYPT, you may set a salt format. # default is "%s", but many systems will generate MD5 hashed # passwords if you use "$1$%.8s". This parameter is optional! crypt_salt_format="%s" ###################################################################### # # Unix Accounts Configuration # ###################################################################### # Login defs # Default Login Shell # Ex: userLoginShell="/bin/bash" userLoginShell="/bin/false" # Home directory # Ex: userHome="/home/%U" userHome="/home/%U" # Gecos userGecos="Samba User" # Default User (POSIX and Samba) GID defaultUserG # Default Computer (Samba) GID defaultComputerG # Skel dir skeletonDir="/etc/skel" # Default password validation time (time in days) Comment the next # line if you don't want password to be enable for # defaultMaxPasswordAge days (be careful to the sambaPwdMustChange # attribute's value) defaultMaxPasswordAge="45" 

Example 10.3.13. Idealx smbldap-tools Control File Part D
###################################################################### # # SAMBA Configuration # ###################################################################### # The UNC path to home drives location (%U username substitution) # Ex: \\My-PDC-netbios-name\homes\%U # Just set it to a null string if you want to use the smb.conf # 'logon home' directive and/or disable roaming profiles userSmbHome="" # The UNC path to profiles locations (%U username substitution) # Ex: \\My-PDC-netbios-name\profiles\%U # Just set it to a null string if you want to use the smb.conf # 'logon path' directive and/or disable roaming profiles userProfile="" # The default Home Drive Letter mapping # (will be automatically mapped at logon time if home directory exist) # Ex: H: for H: userHomeDrive="" # The default user netlogon script name (%U username substitution) # if not used, will be automatically username.cmd # make sure script file is edited under DOS # Ex: %U.cmd # userScript="startup.cmd" # make sure script file is edited under DOS userScript="" # Domain appended to the users "mail"-attribute # when smbldap-useradd -M is used mailDomain="abmas.org" ###################################################################### # # SMBLDAP-TOOLS Configuration (default are ok for a RedHat) # ###################################################################### # Allows not to use smbpasswd # (if with_smbpasswd == 0 in smbldap_conf.pm) but # prefer Crypt::SmbHash library with_smbpasswd="0" smbpasswd="/usr/bin/smbpasswd" 

Example 10.3.14. Kixtart Control File File: logon.kix
; This script just calls the other scripts. ; First we want to get things done for everyone. ; Second, we do first-time login stuff. ; Third, we go through the group-oriented scripts one at a time. ; We want to check for group membership here to avoid the overhead of running ; scripts which don't apply. call "\\massive\netlogon\scripts\main.kix" call "\\massive\netlogon\scripts\setup.kix" IF INGROUP("MEGANET2\ACCT")   call "scripts\acct.kix" ENDIF IF INGROUP("MEGANET2\ENGR","MEGANET2\RECEPTIONIST") call "\\massive\netlogon\scripts\engr.kix" ENDIF IF INGROUP("MEGANET2\FURN")   call "\\massive\netlogon\scripts\furn.kix" ENDIF IF INGROUP("MEGANET2\TRUSS")   call "\\massive\netlogon\scripts\truss.kix" ENDIF 

Example 10.3.15. Kixtart Control File File: main.kix
break on ; Choose whether to hide the login window or not IF INGROUP("MEGANET2\Domain Admins")   USE Z: \\massive\everything   SETCONSOLE("show") ELSE   ; Nobody cares about seeing the login script except admins   SETCONSOLE("hide") ENDIF ; Delete all previously connected shares USE * /delete SETTITLE("Logging on @USERID to @LDOMAIN at @TIME") ; Set the time on the workstation $Timeserver = "\\massive" Settime $TimeServer ; Map the home directory USE H: @HOMESHR ; connect to user's home share IF @ERROR = 0   H:   CD @HOMEDIR ; change directory to user's home directory ENDIF ; Everyone gets the N drive USE N: \\massive\network 

Example 10.3.16. Kixtart Control File File: setup.kix, Part A
; My setup.kix is where all of the redirection stuff happens. Note that with ; the use of registry keys, this only happens the first time they log in.or if ; I delete the pertinent registry keys which triggers it to happen again: ; Check to see if we have written the abmas sub-key before $RETURNCODE = EXISTKEY("HKEY_CURRENT_USER\abmas") IF NOT $RETURNCODE = 0 ; Add key for abmas-specific things on the first login   ADDKEY("HKEY_CURRENT_USER\abmas")   ; The following key gets deleted at the end of the first login   ADDKEY("HKEY_CURRENT_USER\abmas\FIRST_LOGIN") ENDIF ; People with laptops need My Documents to be in their profile. People with ; desktops can have My Documents redirected to their home directory to avoid ; long delays with logging out and out-of-sync files. ; Check to see if this is the first login -- doesn't make sense to do this ; at the very first login $RETURNCODE = EXISTKEY("HKEY_CURRENT_USER\abmas\FIRST_LOGIN") IF NOT $RETURNCODE = 0 ; We don't want to do this stuff for people with laptops or people in the FURN ; group.  (They store their profiles in a different server)   IF NOT INGROUP("MASSIVE\Laptop","MASSIVE\FURN")     $RETURNCODE=EXISTKEY("HKEY_CURRENT_USER\abmas\profile_copied") ; A crude way to tell what OS our profile is for and copy the "My Documents" ; to the redirected folder on the server. It works because the profiles ; are stored as \\server\profiles\user\architecture     IF NOT $RETURNCODE = 0       IF EXIST("\\massive\profiles\@userID\WinXP")         copy "\\massive\profiles\@userID\WinXP\My Documents\*" "\\massive\@userID\"       ENDIF       IF EXIST("\\massive\profiles\@userID\Win2K")         copy "\\massive\profiles\@userID\Win2K\My Documents\*" "\\massive\@userID\"       ENDIF       IF EXIST("\\massive\profiles\@userID\WinNT")         copy "\\massive\profiles\@userID\WinNT\My Documents\*" "\\massive\@userID\"       ENDIF 

Example 10.3.17. Kixtart Control File File: setup.kix, Part B
; Now we will write the registry values to redirect the locations of "My Documents" ; and other folders.       ADDKEY("HKEY_CURRENT_USER\abmas\profile_copied")       WRITEVALUE("HKEY_CURRENT_USER\Software\Microsoft\ Windows\CurrentVersion\Explorer\User Shell Folders", "Personal","\\massive\@userID","REG_SZ")       WRITEVALUE("HKEY_CURRENT_USER\Software\Microsoft\ Windows\CurrentVersion\Explorer\User Shell Folders", "My Pictures", "\\massive\@userID\My Pictures", "REG_SZ")       IF @PRODUCTTYPE="Windows 2000 Professional" or @PRODUCTTYPE="Windows XP Professional"       WRITEVALUE("HKEY_CURRENT_USER\Software\Microsoft\ Windows\CurrentVersion\Explorer\User Shell Folders", "My Videos", "\\massive\@userID\My Videos", "REG_SZ")       WRITEVALUE("HKEY_CURRENT_USER\Software\Microsoft\ Windows\CurrentVersion\Explorer\User Shell Folders", "My Music", "\\massive\@userID\My Music", "REG_SZ")       WRITEVALUE("HKEY_CURRENT_USER\Software\Microsoft\ Windows\CurrentVersion\Explorer\User Shell Folders", "My eBooks", "\\massive\@userID\My eBooks", "REG_SZ")       ENDIF     ENDIF   ENDIF ; Now we will delete the FIRST_LOGIN sub-key that we made before. ; Note - to run this script again you will want to delete the HKCU\abmas ; sub-key, log out, and log back in. $RETURNVALUE = EXISTKEY("HKEY_CURRENT_USER\abmas\FIRST_LOGIN") IF $RETURNVALUE = 0   DELKEY("HKEY_CURRENT_USER\abmas\FIRST_LOGIN") ENDIF 

Example 10.3.18. Kixtart Control File File: acct.kix
; And here is one group-oriented script to show what can be ; done that way: acct.kix: IF INGROUP("MASSIVE\Acct_Admin","MASSIVE\HR")   USE I: \\MEGANET2\HR_PR ENDIF ; Set up printer $RETURNVALUE = existkey("HKEY_CURRENT_USER\Printers\,,massive,acct_hp8500") IF NOT $RETURNVALUE = 0   ADDPRINTERCONNECTION("\\massive\acct_hp8500")   SETDEFAULTPRINTER("\\massive\acct_hp8500") ENDIF ; Set up drive mappings   USE M: \\massive\ACCT   IF INGROUP("MEGANET2\ABRA")     USE T: \\trussrv\abra ENDIF 



    Samba-3 by Example. Practical Exercises to Successful Deployment
    Samba-3 by Example: Practical Exercises to Successful Deployment (2nd Edition)
    ISBN: 013188221X
    EAN: 2147483647
    Year: 2005
    Pages: 142

    flylib.com © 2008-2017.
    If you may any questions please contact us: flylib@qtcs.net