For lack of a better analogy, signals are a way to poke a stick at a process. Programs generate signals to trigger a handler for that signal in another process. The operating system pokes too -- some signals are generated on unusual system events and may kill the program if not handled. If this sounds a little like raising exceptions in Python it should; signals are software-generated events, and the cross-process analog of exceptions. Unlike exceptions, though, signals are identified by number, are not stacked, and are really an asynchronous event mechanism controlled by the operating system, outside the scope of the Python interpreter.
In order to make signals available to scripts, Python provides a signal module that allows Python programs to register Python functions as handlers for signal events. This module is available on both Unix-like platforms and Windows (though the Windows version defines fewer kinds of signals to be caught). To illustrate the basic signal interface, the script in Example 3-20 installs a Python handler function for the signal number passed in as a command-line argument.
Example 3-20. PP2ESystemProcessessignal1.py
########################################################## # catch signals in Python; pass signal number N as a # command-line arg, use a "kill -N pid" shell command # to send this process a signal; most signal handlers # restored by Python after caught (see network scripting # chapter for SIGCHLD details); signal module avaiable # on Windows, but defines only a few signal types there; ########################################################## import sys, signal, time def now( ): return time.ctime(time.time( )) # current time string def onSignal(signum, stackframe): # python signal handler print 'Got signal', signum, 'at', now( ) # most handlers stay in effect signum = int(sys.argv[1]) signal.signal(signum, onSignal) # install signal handler while 1: signal.pause( ) # wait for signals (or: pass)
There are only two signal module calls at work here:
Here is what this script looks like running on Linux: a signal number to watch for (12) is passed in on the command line, and the program is made to run in the background with a & shell operator (available in most Unix-like shells):
[mark@toy]$ python signal1.py 12 & [1] 809 [mark@toy]$ ps PID TTY TIME CMD 578 ttyp1 00:00:00 tcsh 809 ttyp1 00:00:00 python 810 ttyp1 00:00:00 ps [mark@toy]$ kill -12 809 [mark@toy]$ Got signal 12 at Fri Sep 8 00:27:01 2000 kill -12 809 [mark@toy]$ Got signal 12 at Fri Sep 8 00:27:03 2000 kill -12 809 [mark@toy]$ Got signal 12 at Fri Sep 8 00:27:04 2000 [mark@toy]$ kill -9 809 # signal 9 always kills the process
Inputs and outputs are a bit jumbled here, because the process prints to the same screen used to type new shell commands. To send the program a signal, the kill shell command takes a signal number and a process ID to be signalled (809); every time a new kill command sends a signal, the process replies with a message generated by a Python signal handler function.
The signal module also exports a signal.alarm function for scheduling a SIGALRM signal to occur at some number of seconds in the future. To trigger and catch timeouts, set the alarm and install a SIGALRM handler as in Example 3-21.
Example 3-21. PP2ESystemProcessessignal2.py
########################################################## # set and catch alarm timeout signals in Python; # time.sleep doesn't play well with alarm (or signal # in general in my Linux PC), so call signal.pause # here to do nothing until a signal is received; ########################################################## import sys, signal, time def now( ): return time.ctime(time.time( )) def onSignal(signum, stackframe): # python signal handler print 'Got alarm', signum, 'at', now( ) # most handlers stay in effect while 1: print 'Setting at', now( ) signal.signal(signal.SIGALRM, onSignal) # install signal handler signal.alarm(5) # do signal in 5 seconds signal.pause( ) # wait for signals
Running this script on Linux causes its onSignal handler function to be invoked every five seconds:
[mark@toy]$ python signal2.py Setting at Fri Sep 8 00:27:53 2000 Got alarm 14 at Fri Sep 8 00:27:58 2000 Setting at Fri Sep 8 00:27:58 2000 Got alarm 14 at Fri Sep 8 00:28:03 2000 Setting at Fri Sep 8 00:28:03 2000 Got alarm 14 at Fri Sep 8 00:28:08 2000 Setting at Fri Sep 8 00:28:08 2000
Generally speaking, signals must be used with cautions not made obvious by the examples we've just seen. For instance, some system calls don't react well to being interrupted by signals, and only the main thread can install signal handlers and respond to signals in a multithreaded program.
When used well, though, signals provide an event-based communication mechanism. They are less powerful than data streams like pipes, but are sufficient in situations where you just need to tell a program that something important has occurred at all, and not pass along any details about the event itself. Signals are sometimes also combined with other IPC tools. For example, an initial signal may inform a program that a client wishes to communicate over a named pipe -- the equivalent of tapping someone's shoulder to get their attention before speaking. Most platforms reserve one or more SIGUSR signal numbers for user-defined events of this sort.
Introducing Python
Part I: System Interfaces
System Tools
Parallel System Tools
Larger System Examples I
Larger System Examples II
Part II: GUI Programming
Graphical User Interfaces
A Tkinter Tour, Part 1
A Tkinter Tour, Part 2
Larger GUI Examples
Part III: Internet Scripting
Network Scripting
Client-Side Scripting
Server-Side Scripting
Larger Web Site Examples I
Larger Web Site Examples II
Advanced Internet Topics
Part IV: Assorted Topics
Databases and Persistence
Data Structures
Text and Language
Part V: Integration
Extending Python
Embedding Python
VI: The End
Conclusion Python and the Development Cycle