Some Measurement Models


Psychometric test theory involves many kinds of models relating scores on psychological and educational tests to latent variables representing intelligence or various underlying abilities . The following example uses data on four vocabulary tests from Lord (1957). Tests W and X have 15 items each and are administered with very liberal time limits. Tests Y and Z have 75 items and are administered under time pressure. The covariance matrix is read by the following DATA step:

  data lord(type=cov);   input _type_ $ _name_ $ w x y z;   datalines;   n   . 649       .       .       .   cov w 86.3979   .       .       .   cov x 57.7751 86.2632   .       .   cov y 56.8651 59.3177 97.2850   .   cov z 58.8986 59.6683 73.8201 97.8192   ;  

The psychometric model of interest states that W and X are determined by a single common factor F WX , and Y and Z are determined by a single common factor F YZ . The two common factors are expected to have a positive correlation, and it is desired to estimate this correlation. It is convenient to assume that the common factors have unit variance, so their correlation will be equal to their covariance. The error terms for all the manifest variables are assumed to be uncorrelated with each other and with the common factors. The model (labeled here as Model Form D) is as follows .

Model Form D

click to expand

The corresponding path diagram is as follows.

click to expand
Figure 13.11: Path Diagram: Lord

This path diagram can be converted to a RAM model as follows:

  /* 1=w 2=x 3=y 4=z 5=fwx 6=fyz */   title 'H4: unconstrained';   proc calis data=lord cov;   ram 1 1 5 betaw,   1 2 5 betax,   1 3 6 betay,   1 4 6 betaz,   2 1 1 vew,   2 2 2 vex,   2 3 3 vey,   2 4 4 vez,   2 5 5 1,   2 6 6 1,   2 5 6 rho;   run;  

Here are the major results.

start figure
  H4: unconstrained   The CALIS Procedure   Covariance Structure Analysis: Maximum Likelihood Estimation   Fit Function                                          0.0011   Goodness of Fit Index (GFI)                           0.9995   GFI Adjusted for Degrees of Freedom (AGFI)            0.9946   Root Mean Square Residual (RMR)                       0.2720   Parsimonious GFI (Mulaik, 1989)                       0.1666   Chi-Square                                            0.7030   Chi-Square DF                                              1   Pr > Chi-Square                                       0.4018   Independence Model Chi-Square                         1466.6   Independence Model Chi-Square DF                           6   RMSEA Estimate                                        0.0000   RMSEA 90% Lower Confidence Limit                           .   RMSEA 90% Upper Confidence Limit                      0.0974   ECVI Estimate                                         0.0291   ECVI 90% Lower Confidence Limit                            .   ECVI 90% Upper Confidence Limit                       0.0391   Probability of Close Fit                              0.6854   Bentler's Comparative Fit Index                       1.0000   Normal Theory Reweighted LS Chi-Square                0.7026   Akaike's Information Criterion                       -1.2970   Bozdogan's (1987) CAIC                               -6.7725   Schwarz's Bayesian Criterion                         -5.7725   McDonald's (1989) Centrality                          1.0002   Bentler & Bonett's (1980) Non-normed Index            1.0012   Bentler & Bonett's (1980) NFI                         0.9995   James, Mulaik, & Brett (1982) Parsimonious NFI        0.1666   Z-Test of Wilson & Hilferty (1931)                    0.2363   Bollen (1986) Normed Index Rho1                       0.9971   Bollen (1988) Non-normed Index Delta2                 1.0002   Hoelter's (1983) Critical N                             3543  
end figure

Figure 13.12: Lord Data: Major Results for RAM Model, Hypothesis H4
start figure
  H4: unconstrained   Covariance Structure Analysis: Maximum Likelihood Estimation   RAM Estimates   Standard   Term  Matrix  --Row--  -Column-  Parameter    Estimate     Error t Value   1       2  w     1  F1     5  betaw         7.50066   0.32339   23.19   1       2  x     2  F1     5  betax         7.70266   0.32063   24.02   1       2  y     3  F2     6  betay         8.50947   0.32694   26.03   1       2  z     4  F2     6  betaz         8.67505   0.32560   26.64   1       3  E1    1  E1     1  vew          30.13796   2.47037   12.20   1       3  E2    2  E2     2  vex          26.93217   2.43065   11.08   1       3  E3    3  E3     3  vey          24.87396   2.35986   10.54   1       3  E4    4  E4     4  vez          22.56264   2.35028    9.60   1       3  D1    5  D1     5  .             1.00000   1       3  D2    6  D1     5  rho           0.89855   0.01865   48.18   1       3  D2    6  D2     6  .             1.00000  
end figure

The same analysis can be performed with the LINEQS statement. Subsequent analyses are illustrated with the LINEQS statement rather than the RAM statement because it is slightly easier to understand the constraints as written in the LINEQS statement without constantly referring to the path diagram. The LINEQS and RAM statements may yield slightly different results due to the inexactness of the numerical optimization; the discrepancies can be reduced by specifying a more stringent convergence criterion such as GCONV=1E-4 or GCONV=1E-6. It is convenient to create an OUTRAM= data set for use in fitting other models with additional constraints.

  title 'H4: unconstrained';   proc calis data=lord cov outram=ram4;   lineqs w=betaw fwx + ew,   x=betax fwx + ex,   y=betay fyz + ey,   z=betaz fyz + ez;   std fwx fyz=1,   ew ex ey ez=vew vex vey vez;   cov fwx fyz=rho;   run;  

The LINEQS displayed output is as follows.

start figure
  H4: unconstrained   The CALIS Procedure   Covariance Structure Analysis: Maximum Likelihood Estimation   w       =   7.5007*fwx      + 1.0000 ew   Std Err     0.3234 betaw   t Value    23.1939   x       =   7.7027*fwx      + 1.0000 ex   Std Err     0.3206 betax   t Value    24.0235   y       =   8.5095*fyz      + 1.0000 ey   Std Err     0.3269 betay   t Value    26.0273   z       =   8.6751*fyz      + 1.0000 ez   Std Err     0.3256 betaz   t Value    26.6430   Variances of Exogenous Variables   Standard   Variable Parameter      Estimate         Error    t Value   fwx                      1.00000   fyz                      1.00000   ew       vew            30.13796       2.47037      12.20   ex       vex            26.93217       2.43065      11.08   ey       vey            24.87396       2.35986      10.54   ez       vez            22.56264       2.35028       9.60   Covariances Among Exogenous Variables   Standard   Var1 Var2 Parameter      Estimate         Error    tValue   fwx  fyz  rho            0.89855        0.01865     48.18  
end figure

Figure 13.13: Lord Data: Using LINEQS Statement for RAM Model, Hypothesis H4

In an analysis of these data by J reskog and S rbom (1979, pp. 54-56; Loehlin 1987, pp. 84-87), four hypotheses are considered :

H 1 :

= 1,

² W = ² X , Var( E W ) = Var( E X ),

² Y = ² Z , Var( E Y ) = Var( E Z )

H 2 :

same as H 1 : except is unconstrained

H 3 :

= 1

H 4 :

Model Form D without any additional constraints

The hypothesis H 3 says that there is really just one common factor instead of two; in the terminology of test theory, W , X , Y , and Z are said to be congeneric. The hypothesis H 2 says that W and X have the same true-scores and have equal error variance; such tests are said to be parallel. The hypothesis H 2 also requires Y and Z to be parallel. The hypothesis H 1 says that W and X are parallel tests, Y and Z are parallel tests, and all four tests are congeneric.

It is most convenient to fit the models in the opposite order from that in which they are numbered. The previous analysis fit the model for H 4 and created an OUTRAM= data set called ram4 . The hypothesis H 3 can be fitted directly or by modifying the ram4 data set. Since H 3 differs from H 4 only in that is constrained to equal 1, the ram4 data set can be modified by finding the observation for which _NAME_ ='rho' and changing the variable _NAME_ to a blank value (meaning that the observation represents a constant rather than a parameter to be fitted) and setting the variable _ESTIM_ to the value 1. Both of the following analyses produce the same results:

  title 'H3: W, X, Y, and Z are congeneric';   proc calis data=lord cov;   lineqs w=betawf+ew,   x=betaxf+ex,   y=betayf+ey,   z=betazf+ez;   std f=1,   ew ex ey ez=vew vex vey vez;   run;   data ram3(type=ram);   set ram4;   if _name_='rho' then   do;   _name_=' ';   _estim_=1;   end;   run;   proc calis data=lord inram=ram3 cov;   run;  

The resulting output from either of these analyses is displayed in Figure 13.14.

start figure
  H3: W, X, Y, and Z are congeneric   The CALIS Procedure   Covariance Structure Analysis: Maximum Likelihood Estimation   Fit Function                                          0.0559   Goodness of Fit Index (GFI)                           0.9714   GFI Adjusted for Degrees of Freedom (AGFI)            0.8570   Root Mean Square Residual (RMR)                       2.4636   Parsimonious GFI (Mulaik, 1989)                       0.3238   Chi-Square                                           36.2095   Chi-Square DF                                              2   Pr > Chi-Square                                       <.0001   Independence Model Chi-Square                         1466.6   Independence Model Chi-Square DF                           6   RMSEA Estimate                                        0.1625   RMSEA 90% Lower Confidence Limit                      0.1187   RMSEA 90% Upper Confidence Limit                      0.2108   ECVI Estimate                                         0.0808   ECVI 90% Lower Confidence Limit                       0.0561   ECVI 90% Upper Confidence Limit                       0.1170   Probability of Close Fit                              0.0000   Bentler's Comparative Fit Index                       0.9766   Normal Theory Reweighted LS Chi-Square               38.1432   Akaike's Information Criterion                       32.2095   Bozdogan's (1987) CAIC                               21.2586   Schwarz's Bayesian Criterion                         23.2586   McDonald's (1989) Centrality                          0.9740   Bentler & Bonett's (1980) Non-normed Index            0.9297   Bentler & Bonett's (1980) NFI                         0.9753   James, Mulaik, & Brett (1982) Parsimonious NFI        0.3251   Z-Test of Wilson & Hilferty (1931)                    5.2108   Bollen (1986) Normed Index Rho1                       0.9259   Bollen (1988) Non-normed Index Delta2                 0.9766   Hoelter's (1983) Critical N                              109   H3: W, X, Y, and Z are congeneric   Covariance Structure Analysis: Maximum Likelihood Estimation   w       =   7.1047*fwx      +  1.0000 ew   Std Err     0.3218 betaw   t Value    22.0802   x       =   7.2691*fwx      +  1.0000 ex   Std Err     0.3183 betax   t Value    22.8397   y       =   8.3735*fyz      +  1.0000 ey   Std Err     0.3254 betay   t Value    25.7316   z       =   8.5106*fyz      +  1.0000 ez   Std Err     0.3241 betaz   t Value    26.2598   Variances of Exogenous Variables   Standard   Variable Parameter      Estimate         Error    t Value   fwx                      1.00000   fyz                      1.00000   ew       vew            35.92087       2.41466      14.88   ex       vex            33.42397       2.31038      14.47   ey       vey            27.16980       2.24619      12.10   ez       vez            25.38948       2.20839      11.50  
end figure

Figure 13.14: Lord Data: Major Results for Hypothesis H3

The hypothesis H 2 requires that several pairs of parameters be constrained to have equal estimates. With PROC CALIS, you can impose this constraint by giving the same name to parameters that are constrained to be equal. This can be done directly in the LINEQS and STD statements or by using PROC FSEDIT or a DATA step to change the values in the ram4 data set:

  title 'H2: W and X parallel, Y and Z parallel';   proc calis data=lord cov;   lineqs w=betawx fwx + ew,   x=betawx fwx + ex,   y=betayz fyz + ey,   z=betayz fyz + ez;   std fwx fyz=1,   ew ex ey ez=vewx vewx veyz veyz;   cov fwx fyz=rho;   run;  
  data ram2(type=ram);   set ram4;   if _name_='betaw' then _name_='betawx';   if _name_='betax' then _name_='betawx';   if _name_='betay' then _name_='betayz';   if _name_='betaz' then _name_='betayz';   if _name_='vew' then _name_='vewx';   if _name_='vex' then _name_='vewx';   if _name_='vey' then _name_='veyz';   if _name_='vez' then _name_='veyz';   run;   proc calis data=lord inram=ram2 cov;   run;  

The resulting output from either of these analyses is displayed in Figure 13.15.

start figure
  H2: W and X parallel, Y and Z parallel   The CALIS Procedure   Covariance Structure Analysis: Maximum Likelihood Estimation   Fit Function                                          0.0030   Goodness of Fit Index (GFI)                           0.9985   GFI Adjusted for Degrees of Freedom (AGFI)            0.9970   Root Mean Square Residual (RMR)                       0.6983   Parsimonious GFI (Mulaik, 1989)                       0.8321   Chi-Square                                            1.9335   Chi-Square DF                                              5   Pr > Chi-Square                                       0.8583   Independence Model Chi-Square                         1466.6   Independence Model Chi-Square DF                           6   RMSEA Estimate                                        0.0000   RMSEA 90% Lower Confidence Limit                           .   RMSEA 90% Upper Confidence Limit                      0.0293   ECVI Estimate                                         0.0185   ECVI 90% Lower Confidence Limit                            .   ECVI 90% Upper Confidence Limit                       0.0276   Probability of Close Fit                              0.9936   Bentler's Comparative Fit Index                       1.0000   Normal Theory Reweighted LS Chi-Square                1.9568   Akaike's Information Criterion                       -8.0665   Bozdogan's (1987) CAIC                              -35.4436   Schwarz's Bayesian Criterion                        -30.4436   McDonald's (1989) Centrality                          1.0024   Bentler & Bonett's (1980) Non-normed Index            1.0025   Bentler & Bonett's (1980) NFI                         0.9987   James, Mulaik, & Brett (1982) Parsimonious NFI        0.8322   Z-Test of Wilson & Hilferty (1931)                   -1.0768   Bollen (1986) Normed Index Rho1                       0.9984   Bollen (1988) Non-normed Index Delta2                 1.0021   Hoelter's (1983) Critical N                             3712   H2: W and X parallel, Y and Z parallel   Covariance Structure Analysis: Maximum Likelihood Estimation   w       =   7.6010*fwx      +  1.0000 ew   Std Err     0.2684 betawx   t Value    28.3158   x       =   7.6010*fwx      +  1.0000 ex   Std Err     0.2684 betawx   t Value    28.3158   y       =   8.5919*fyz      +  1.0000 ey   Std Err     0.2797 betayz   t Value    30.7215   z       =   8.5919*fyz      +  1.0000 ez   Std Err     0.2797 betayz   t Value    30.7215   Variances of Exogenous Variables   Standard   Variable Parameter      Estimate         Error    t Value   fwx                      1.00000   fyz                      1.00000   ew       vewx           28.55545       1.58641      18.00   ex       vewx           28.55545       1.58641      18.00   ey       veyz           23.73200       1.31844      18.00   ez       veyz           23.73200       1.31844      18.00   Covariances Among Exogenous Variables   Standard   Var1 Var2 Parameter      Estimate         Error    t Value   fwx fyz rho               0.89864       0.01865      48.18  
end figure

Figure 13.15: Lord Data: Major Results for Hypothesis H2

The hypothesis H 1 requires one more constraint in addition to those in H 2 :

  title 'H1: W and X parallel, Y and Z parallel, all congeneric';   proc calis data=lord cov;   lineqs w=betawx f + ew,   x=betawxf+ex,   y=betayzf+ey,   z=betayzf+ez;   std f=1,   ew ex ey ez=vewx vewx veyz veyz;   run;  
  data ram1(type=ram);   set ram2;   if _name_='rho' then   do;   _name_=' ';   _estim_=1;   end;   run;   proc calis data=lord inram=ram1 cov;   run;  

The resulting output from either of these analyses is displayed in Figure 13.16.

start figure
  H1: W and X parallel, Y and Z parallel, all congeneric   The CALIS Procedure   Covariance Structure Analysis: Maximum Likelihood Estimation   Fit Function                                          0.0576   Goodness of Fit Index (GFI)                           0.9705   GFI Adjusted for Degrees of Freedom (AGFI)            0.9509   Root Mean Square Residual (RMR)                       2.5430   Parsimonious GFI (Mulaik, 1989)                       0.9705   Chi-Square                                           37.3337   Chi-Square DF                                              6   Pr > Chi-Square                                       <.0001   Independence Model Chi-Square                         1466.6   Independence Model Chi-Square DF                           6   RMSEA Estimate                                        0.0898   RMSEA 90% Lower Confidence Limit                      0.0635   RMSEA 90% Upper Confidence Limit                      0.1184   ECVI Estimate                                         0.0701   ECVI 90% Lower Confidence Limit                       0.0458   ECVI 90% Upper Confidence Limit                       0.1059   Probability of Close Fit                              0.0076   Bentler's Comparative Fit Index                       0.9785   Normal Theory Reweighted LS Chi-Square               39.3380   Akaike's Information Criterion                       25.3337   Bozdogan's (1987) CAIC                               -7.5189   Schwarz's Bayesian Criterion                         -1.5189   McDonald's (1989) Centrality                          0.9761   Bentler & Bonett's (1980) Non-normed Index            0.9785   Bentler & Bonett's (1980) NFI                         0.9745   James, Mulaik, & Brett (1982) Parsimonious NFI        0.9745   Z-Test of Wilson & Hilferty (1931)                    4.5535   Bollen (1986) Normed Index Rho1                       0.9745   Bollen (1988) Non-normed Index Delta2                 0.9785   Hoelter's (1983) Critical N                              220   H1: W and X parallel, Y and Z parallel, all congeneric   Covariance Structure Analysis: Maximum Likelihood Estimation   w       =   7.1862*fwx      +  1.0000 ew   Std Err     0.2660 betawx   t Value    27.0180   x       =   7.1862*fwx      +  1.0000 ex   Std Err     0.2660 betawx   t Value    27.0180   y       =   8.4420*fyz      +  1.0000 ey   Std Err     0.2800 betayz   t Value    30.1494   z       =   8.4420*fyz      +  1.0000 ez   Std Err     0.2800 betayz   t Value    30.1494   Variances of Exogenous Variables   Standard   Variable Parameter      Estimate         Error    t Value   fwx                      1.00000   fyz                      1.00000   ew       vewx           34.68865       1.64634      21.07   ex       vewx           34.68865       1.64634      21.07   ey       veyz           26.28513       1.39955      18.78   ez       veyz           26.28513       1.39955      18.78   Covariances Among Exogenous Variables   Standard   Var1 Var2 Parameter      Estimate         Error    t Value   fwx fyz                   1.00000  
end figure

Figure 13.16: Lord Data: Major Results for Hypothesis H1

The goodness-of-fit tests for the four hypotheses are summarized in the following table.

Hypothesis

Number of Parameters

2

Degrees of Freedom

p -value

H 1

4

37.33

6

0.0000

1.0

H 2

5

1.93

5

0.8583

0.8986

H 3

8

36.21

2

0.0000

1.0

H 4

9

0.70

1

0.4018

0.8986

The hypotheses H 1 and H 3 , which posit = 1, can be rejected. Hypotheses H 2 and H 4 seem to be consistent with the available data. Since H 2 is obtained by adding four constraints to H 4 , you can test H 2 versus H 4 by computing the differences of the chi-square statistics and their degrees of freedom, yielding a chi-square of 1.23 with four degrees of freedom, which is obviously not significant. So hypothesis H 2 is consistent with the available data.

The estimates of for H 2 and H 4 are almost identical, about 0.90, indicating that the speeded and unspeeded tests are measuring almost the same latent variable, even though the hypotheses that stated they measured exactly the same latent variable are rejected.




SAS.STAT 9.1 Users Guide (Vol. 1)
SAS/STAT 9.1 Users Guide, Volumes 1-7
ISBN: 1590472438
EAN: 2147483647
Year: 2004
Pages: 156

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net