Moving IPv6 to Production


At the end of the 1980s, enterprises were mostly running IPv4 as a network management protocol in conjunction with SNMP, a common feature on networking devices and network management stations. Real production traffic, however, was flowing over AppleTalk, DECnet, IPX, or SNA. Then, the integration of a free TCP/IP stack on most operating systems accompanied by a large set of applications, including the emergence of the World Wide Web, favored a transition from these legacy protocols to IPv4. Today, IPv4 and the Internet are deeply part of our life and not anymore reserved to IT departments. New generations of appliances appear every year that implement IP. The importance of the protocol makes it critical for businesses to stay in sync with the rapid evolution of the technology. An upgrade of the IP protocol is a significant evolutionary step, so it has to be addressed accordingly. AC has to evaluate the costs of versus the urgency and benefits of such an upgrade.

Cost Analysis

Regardless of the AC network's age, the full integration of IPv6 services means that an inventorysimilar to what was done for Y2Kof the existing equipment must be performed to evaluate the cost of the project. This process would help plan the associated budget and project timescale. In some cases, an enterprise clearly identifies a need for IPv6 to support a given application, as described later in this section. But it is expected that in many cases the integration of this new IP version will occur over years as the networking environment gets upgraded to the newest generation of products and applications. The cost analysis of such a project must include the upgrade expenses for elements such as hosts and network devices, as described in Chapter 12, "Generic Deployment Planning Guidelines." The results of the inventory drive an AC policy to require all new acquisitions to be IPv6 capable or to have a public roadmap for it.

Operations

As introduced in Chapter 12, the move of IPv6 to production impacts the operational team, who must complete the following:

  • Training An AC team leader and two senior engineers will subscribe to a Cisco IPv6 class through a learning partner. Upon completion, they proceed to teach their colleagues. As a Cisco customer with CCO Learning Connection access, AC people get access to the available e-Learning Cisco IOS IPv6 class.

  • Negotiation with T-World Fees associated with IPv6 services vary between Internet service provider as for IPv4. Because AC was T-World's first customer to request a worldwide IPv6 deployment, they negotiated a free offering for the next two years based on the agreement that T-World can use AC as a customer reference.

Then AC could start the full integration of IPv6 with the setup of the networking equipment as soon as the design phase is complete. Configuration will be done remotely and gradually, depending on the readiness of the devices. When a local intervention is required, IPv6 will be planned in conjunction with another site intervention. Global deployment of IPv6 hosts will be complete for several years because new version of operating systems and applications must be certified by the IT department. Nevertheless, by mandating the IPv6 support through new acquisitions or development of applications, the cost of the upgrade could be integrated in the next rollout of desktops and laptops, once again decreasing the cost of deployment.




Deploying IPv6 Networks
Deploying IPv6 Networks
ISBN: 1587052105
EAN: 2147483647
Year: 2006
Pages: 130

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net