Lesson 2:Switching

There is another type of data-link layer connection device, called a switch, which has largely replaced the bridge in the modern network. It is also replacing routers in many instances. A switch is a box with multiple cable jacks, making it look similar to a hub. In fact, some manufacturers have hubs and switches of various sizes that are identical in appearance, except for their markings. The difference between a hub and a switch is that a hub forwards every incoming packet out through all of its ports, and a switch forwards each incoming packet only to the port that provides access to the destination system, as shown in Figure 3.4.

Figure 3.4  A switch forwards incoming packets only to the port that provides access to the destination system


After this lesson, you will be able to

  • Identify the functions of a switch
  • Understand how switches can improve network efficiency
  • Identify the basic types of switches available

Estimated lesson time: 15 minutes


Because they forward data to a single port only, switches essentially convert the LAN from a shared network medium to a dedicated one. If you have a small network that uses a switch instead of a hub (such a switch is sometimes called a switching hub), each packet takes a dedicated path from the source computer to the destination, forming a separate collision domain for those two computers. Switches still forward broadcast messages to all of their ports, but not unicasts and multicasts. No computers receive packets destined for other systems, and no collisions occur during unicast transmissions because every pair of computers on the network has what amounts to a dedicated cable segment connecting them. Thus, a bridge reduces unnecessary traffic congestion on the network, but a switch practically eliminates it.

Another advantage of switching is that each pair of computers has the full bandwidth of the network dedicated to it. A standard Ethernet LAN using a hub might have 20 or more computers sharing the same 10 Mbps of bandwidth. Replace the hub with a switch, and every pair of computers has its own dedicated 10-Mbps channel. This can greatly improve the overall performance of the network without the need for any workstation modifications. In addition, some switches provide ports that operate in full-duplex mode, which means that two computers can send traffic in both directions at the same time using separate wire pairs within the network cable. Full-duplex operation effectively doubles the throughput of a 10-Mbps network to 20 Mbps.

Switches are, in general, more expensive than repeating hubs and less expensive than routers. As with hubs, you can purchase switches that range from small stand-alone units to large rack-mounted models.

Installing Switches

Switches generally aren't needed on small networks that only use a single hub. They are more often found on larger networks, where they're used instead of bridges or routers. If you take a standard enterprise internetwork consisting of a backbone and a series of segments and replace the routers with switches, the effect is profound. On the routed network, the backbone must carry the internetwork traffic generated by all the segments. This can lead to heavy traffic on the backbone, even if it uses a faster medium than the segments. On a switched network, you connect the computers to individual workgroup switches, which are in turn connected to a high-performance backbone switch, as shown in Figure 3.5. As a result, any computer on the network can open a dedicated channel to any other computer, even when the data path runs through several switches.

For more information about the backbone/segment internetwork configuration, see Lesson 1: Network Communications, in Chapter 1, "Networking Basics."

Figure 3.5  Switching enables computers to communicate directly with other computers, without the need for a shared backbone network

There are many different ways to use switches on a complex internetwork; you don't have to replace all of the hubs and routers with switches at one time. For example, you can continue to use your standard shared network hubs and connect them all to a multiport switch instead of routers. This increases the efficiency of your internetwork traffic. On the other hand, if your network tends to generate more traffic within the individual LANs than between them, you can replace the workgroup hubs with switches to increase the available intranetwork bandwidth for each computer, leaving the backbone network intact.

The problem with replacing all of the routers on a large internetwork with switches is that you create one huge broadcast domain instead of several small ones. The issue of collision domains is no longer a problem because there are far fewer collisions. However, switches relay every broadcast generated by a computer anywhere on the network to every other computer, which increases the number of unnecessary packets processed by each system. There are several technologies that address this problem, such as the following:

  • Virtual LANs (VLANs).  With a virtual LAN you can create subnets on a switched network that exist only in the switches themselves. The physical network is still switched, but administrators can specify the addresses of the systems that are to belong to a specific subnet. These systems can be located anywhere because the subnet is virtual and not constrained by the physical layout of the network. When a computer on a particular subnet transmits a broadcast message, the packet goes only to the computers in that subnet, rather than being propagated throughout the entire network. Communication between subnets can be either routed or switched, but all traffic within a VLAN is switched.
  • Layer 3 switching.  Layer 3 switching is a variation on the VLAN concept that minimizes the amount of routing needed between the VLANs. When communication between systems on different VLANs is required, a router establishes a connection between the systems and then the switches take over. Routing occurs only when absolutely necessary.

Switch Types

There are two basic types of switches: cut-through and store-and-forward. A cut-through switch forwards packets immediately by reading the destination address from their data-link layer protocol headers as soon as they're received and relaying the packets out through the appropriate port with no additional processing. The switch doesn't even wait for the entire packet to arrive before it begins forwarding it. In most cases, cut-through switches use a hardware-based mechanism that consists of a grid of input/output (I/O) circuits that enable data to enter and leave the switch through any port. This is called matrix switching or crossbar switching. This type of switch is relatively inexpensive and minimizes the delay incurred during the processing of packets by the switch (which is called latency).

A store-and-forward switch waits until an entire packet arrives before forwarding it to its destination. This type of unit can be a shared-memory switch, which has a common memory buffer that stores the incoming data from all of the ports, or a bus architecture switch, with individual buffers for each port, connected by a bus. While the packet is stored in the switch's memory buffers, the switch takes the opportunity to verify the data by performing a cyclical redundancy check (CRC). The switch also checks for other problems peculiar to the data-link layer protocol involved, which may result in malformed frames—commonly known as runts, giants, and a condition called jabber. This checking naturally introduces additional latency into the packet forwarding process, and the additional functions make store-and-forward switches more expensive than cut-through switches.

Run the Hubs_and_Switches video located in the Demos folder on the CD-ROM accompanying this book for a demonstration of the difference between a hub and a switch.

Exercise 1: Using Switches

Study the network diagram that follows and specify which device (or devices) you could replace with switches to achieve the following results with a minimum of expense.

  1. Which of the following devices would you replace with switches to reduce the number of collisions on the backbone?
    1. Hub A
    2. Routers A, B, and C, and Hubs A, B, and C
    3. Hubs A, B, and C
    4. Routers A, B, and C
  2. Which of the following devices would you replace with switches to reduce traffic on the first-floor segment?
    1. Hub A
    2. Router A
    3. Router A and Hub A
    4. Routers A, B, and C
  3. Which of the following devices would you replace with switches to create a single broadcast domain for the entire network?
    1. Router B and Hub B
    2. Routers A, B, and C
    3. Hubs, A, B, and C
    4. Routers A, B, and C, and Hubs A, B, and C

Lesson Review

  1. The functionality of a switch is best described as being a combination of what two devices?
    1. A router and a gateway
    2. A hub and a bridge
    3. A bridge and a router
    4. A repeater and a hub
  2. Which of the following effects is a result of replacing the routers in a segment/backbone network with switches?
    1. The speed of the network increases.
    2. The traffic on the backbone increases.
    3. The number of LANs increases.
    4. The bandwidth available to workstations increases.
  3. When you use switches instead of routers and hubs, what is the effect on the number of collisions on the network?
    1. Increases
    2. Decreases
    3. Stays the same
  4. When you replace the routers on an internetwork consisting of three segments connected by one backbone with switches, how many broadcast domains do you end up with?
    1. None
    2. One
    3. Three
    4. Four
  5. What type of switch immediately relays signals from the incoming port to the outgoing port?
    1. A cut-through switch
    2. A shared memory switch
    3. A bus architecture switch
    4. A store-and-forward switch
  6. On a switched network, VLANs are used to create multiples of what?
    1. Collision domains
    2. Broadcast domains
    3. Internetworks
    4. All of the above
  7. Which of the following devices does not have buffers to store data during processing?
    1. A repeating hub
    2. A local bridge
    3. A cut-through switch
    4. All of the above

Lesson Summary

  • Switches improve on the function of bridges by forwarding packets only to their destination systems.
  • Switches reduce the collisions on a network and increase the bandwidth available to each computer.
  • Virtual local area networks can help you create multiple broadcast domains on a switched network.
  • Several types of switches are available, from relatively simple and inexpensive workgroup units to complex enterprise network switches.


Network+ Certification Training Kit
Self-Paced Training Kit Exam 70-642: Configuring Windows Server 2008 Network Infrastructure
ISBN: 0735651604
EAN: 2147483647
Year: 2001
Pages: 105

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net