| [Cover] [Contents] [Index] |
Page vi
| 3.6 Neural networks in remote sensing image classification | 140 | |||
| 4 | Methods based on fuzzy set theory | 149 | ||
| 4.1 Introduction to fuzzy set theory | 150 | |||
| 4.2 Fuzzy c-means clustering algorithm | 153 | |||
| 4.3 Fuzzy maximum likelihood classification | 157 | |||
| 4.4 Fuzzy rule base | 159 | |||
| 4.5 Image classification using fuzzy rules | 169 | |||
| 4.6 Fuzzy classification: interpretation of mixed pixels | 176 | |||
| 5 | Texture quantisation | 186 | ||
| 5.1 Fractal and multifractal dimensions | 187 | |||
| 5.2 Frequency domain filtering | 207 | |||
| 5.3 Grey level co-occurrence matrix (GLCM) | 212 | |||
| 5.4 Multiplicative autoregressive random fields | 216 | |||
| 5.5 The semivariogram and window size determination | 219 | |||
| 5.6 Experimental analysis | 223 | |||
| 6 | Modelling context using Markov random fields | 230 | ||
| 6.1 Markov random fields and Gibbs random fields | 231 | |||
| 6.2 Construction of posterior energy | 241 | |||
| 6.3 Robust M estimator | 251 | |||
| 6.4 Parameter estimation | 255 | |||
| 6.5 MAP-MRF classification algorithms | 260 | |||
| 6.6 Experimental results | 267 | |||
| 7 | Multisource classification | 271 | ||
| 7.1 Stacked-vector method | 272 | |||
| 7.2 Incorporating topographic data | 273 | |||
| 7.3 The extension of Bayesian classification theory | 274 | |||
| 7.4 Evidential reasoning | 281 | |||
| 7.5 Dealing with source reliability | 289 | |||
| 7.6 Experimental results | 295 | |||
| References | 299 | |||
| Index | 326 | |||
| [Cover] [Contents] [Index] |