Certification Objective 1.08: Basic TCPIP Networking

 < Day Day Up > 



Certification Objective 1.08: Basic TCP/IP Networking

TCP/IP is a series of protocols organized in layers, known as a protocol suite. It was developed for Unix and eventually adopted as the standard for communication on the Internet. With IP addresses, it can help you organize your network. Then, there are a number of TCP/IP tools and configurations that can help you manage your network.

As with the previous sections in this chapter, the statements here are oversimplifications. So if you find this section overwhelming, read the references cited at the beginning of the chapter. Linux is built for networking, and there is no practical way to pass either the RHCT or the RHCE exams unless you understand networking in some detail.

IP Numbers and Classes

Every computer that communicates on a network needs its own IP address. Some addresses are assigned permanently to a particular computer; these are known as static addresses. Others are leased from a DHCP server for a limited amount of time; these are also known as dynamic IP addresses.

Two standards for IP addresses are in use today, IP version 4 (IPv4) and IP version 6 (IPv6). IPv4 addresses have 32 bits and are set up in octets in dotted decimal notation. The range of possible IPv4 addresses is between 0.0.0.0 to 255.255.255.255. While over four billion IP addresses are available, that is not nearly enough for the current Internet.

IPv6 addresses have 128 bits and are set up in hexadecimal notation. An IPv6 address is normally organized in eight groups of four hexadecimal numbers each, and it may look like 4abe:03e2:c132:69fa:0000:0000:c0b8:2148. More than 340,000,000,000,000,000,000,000,000,000,000,000,000 IPv6 addresses are available.

To ease the transition, specific IPv6 addresses have been assigned for every one of the four billion IPv4 addresses. There are still over 3.4x1038 addresses left over. While actual routing on the Internet now commonly uses IPv6, network configuration in Linux is still normally based on IPv4 addresses.

IPv4 addresses are organized into five different classes, as shown in Table 1-7. The academics among you may note that this is different from the official addresses in each IPv4 class as specified in RFC 1518 from the Internet Engineering Task Force (www.ietf.org). The assignable address range includes those IP addresses that can be assigned to a specific computer on a network.

Table 1-7: IP Address Classes

Class

Assignable Address Range

Note

A

1.1.1.1-126.255.255.254

Allows networks of up to 16 million computers

B

128.0.0.1-191.255.255.254

Allows networks of up to 65,000 computers

C

192.0.0.1-223.255.255.254

Allows networks of up to 254 computers

D

224.0.0.1-239.255.255.254

Reserved for multicasts

E

240.0.0.1-255.255.255.254

Reserved for experimental use

In addition, there are a number of private IP addresses that are not to be assigned to any computer that is directly connected to the Internet. They are associated with network addresses 10.0.0.0, 172.168.0.0, and 192.168.0.0 through 192.168.255.0.

IP Addresses Define a Network

Three key IP addresses define a network: the network address, the broadcast address, and the subnet mask. The network address is always the first IP address in a range; the broadcast address is always the last address in the same range. The subnet mask helps your computer define the difference between the two addresses. You can assign IP addresses between the network and broadcast addresses (not including these addresses) to any computer on the network.

As an example, let's define the range of addresses for a private network. Start with the private network address 192.168.122.0. Use the standard subnet mask for a class C network, 255.255.255.0. Based on these two addresses, the broadcast address is 192.168.122.255, and the range of IP addresses that you can assign on that particular network is 192.168.122.1 through 192.168.122.254.

If this is confusing to you in any way, please refer to the IP Sub-Networking Mini-HOWTO of the Linux Documentation Project at www.tldp.org.

Tools and Commands

You have a substantial number of tools available to manage the TCP/IP protocol suite on your Linux computer. Three of the more important commands are ping, ifconfig, and netstat.

ping

The ping command allows you to test connectivity-locally, within your network, and on the Internet. For the purpose of this section, assume your IP address is 192.168.122.43, and the gateway address on your network is 192.168.122.99. If you're having problems connecting to a network, you should use the ping command in the following order. The first step is to test the integrity of TCP/IP on your computer:

# ping 127.0.0.1

Normally, ping works continuously on Linux; you'll need to press CTRL-C to stop this command. If you need to see if you're properly connected to your LAN, you should ping your own IP address:

# ping 192.168.122.43

If that works, ping the address of another computer on your network. Then start tracing the route to the Internet. ping the address for your gateway, in this case, 192.168.122.99. If possible, ping the address of your network's connection to the Internet. And finally, ping the address of a computer that you know is active on the Internet.

You can substitute host names such as www.google.com for an IP address. If the host name doesn't work, there's a problem with the database of host names and IP addresses, more commonly known as a DNS, BIND, or nameserver.

ifconfig

The ifconfig command can help you check and configure network adapters. Run the ifconfig command by itself to see the detected adapters on your computer. You can also use ifconfig to assign IP address or hardware port information as well. For example, if you want to assign IRQ 10 to the second Ethernet adapter, run the following command:

# ifconfig eth1 irq 10

For more information on ifconfig, refer to Chapter 4.

netstat

The netstat command is versatile; it can help you see the channels available for network connections, interface statistics, and more. One important version of this command, netstat -r, displays routing tables that can tell you if your computer knows where to send a message. More information on this command is available in Chapter 4.

Name Resolution

When I used a static IP address on my high-speed Internet connection, I could sometimes memorize those numbers. But how can anyone memorize the IP addresses of every Web site you need on the Internet? Using four configuration files, Linux can help you translate computer host names to IP addresses.

/etc/hosts

The first database of host names and IP addresses was set up in a static text file, /etc/hosts. When there were just a few nodes on the network that eventually turned into the Internet, it was possible to maintain identical /etc/hosts files on each computer. Here's a typical line in /etc/hosts, which lists the IP address, fully qualified domain name, and alias for one computer connection:

192.168.132.32    linux1.mommabears.com  laptop 

/etc/resolv.conf

There are millions of hosts on the Internet. Even if it were possible to collect all domain names and IP addresses into a /etc/hosts file, the file would overwhelm every computer. And it would overwhelm every network administrator who would have to make sure that all the /etc/hosts files on the Internet match-and get updated every time a new Web site appears. That's why the Domain Name System (DNS) was developed, based on the Berkeley Internet Name Domain (BIND). In /etc/resolv.conf, the IP address of each DNS server is listed with a simple line similar to:

nameserver 192.168.0.1

/etc/host.conf

Many networks configure an /etc/hosts file for the local network and a DNS server for other networks and/or the Internet. When your computer looks for an IP address, this file determines whether it searches through /etc/hosts or DNS first. This is usually a one-line file:

order hosts,bind

A computer with this line looks through /etc/hosts first. If it can't find the computer name that you want in that file, it next looks to the DNS server (bind) for the computer name.

/etc/nsswitch.conf

This file relates to the configuration on a network of Linux- and Unix-type computers, which are configured to communicate using the Network File System (NFS). When it is used in concert with the Network Information System (NIS), networks can maintain a single database of usernames and passwords for all NFS-enabled computers on that network.



 < Day Day Up > 



RCHE Red Hat Certified Engineer Linux Study Guide[c] Exam (Rh302)
RCHE Red Hat Certified Engineer Linux Study Guide[c] Exam (Rh302)
ISBN: 71765654
EAN: N/A
Year: 2003
Pages: 194

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net