Man-in-the-Middle Attacks on Wireless Networks

 < Day Day Up > 



Placing a rogue AP (an unauthorized access point placed on a network by an individual) within range of wireless stations is a wireless-specific variation of a man-in-the-middle attack. If the attacker knows the SSID the network uses (which, as we have seen, is easily discoverable) and the rogue AP has enough strength, wireless users have no way of knowing that they are connecting to an unauthorized AP.

Using a rogue AP, an attacker can gain valuable information about the wireless network, such as authentication requests, the secret key that is in use, and so on. Often, the attacker will set up a laptop with two wireless adapters, in which the rogue AP uses one card and the other is used to forward requests through a wireless bridge to the legitimate AP. With a sufficiently strong antenna, the rogue AP does not have to be located in close proximity to the legitimate AP.

For example, the attacker can run the rogue AP from a car or van parked some distance away from the building containing the network. However, it is also common to set up hidden rogue APs (under desks, in closets, and so on) close to, and within, the same physical area as the legitimate AP. Due to their virtually undetectable nature, the only defense against rogue APs is vigilance through frequent site surveys (using tools such as AirMagnet, NetStumbler, and AiroPeek) and physical security.

Frequent site surveys also have the advantage of uncovering the unauthorized APs that company staff members might have set up in their own work areas, thereby compromising the entire network and completely undoing the hard work that went into securing the network in the first place. These unauthorized APs are usually set up with no malicious intent but rather were created for the convenience of the user, who might want to be able to connect to the network via his or her laptop in meeting rooms, break rooms, or other areas that do not have wired outlets. Even if your company does not use, or plan to use, a wireless network, you should consider doing regular wireless site surveys to see if someone has violated your company security policy by placing an unauthorized AP on the network, regardless of that person’s intent.

Hijacking and Modifying a Wireless Network

Numerous techniques are available for an attacker to hijack a wireless network or session. Unlike some attacks, network and security administrators may be unable to distinguish between the hijacker and a legitimate passenger.

Many tools are available to the network hijacker. These tools are based on basic implementation issues within almost every network device available today. As TCP/IP packets go through switches, routers, and APs, each device looks at the destination IP address and compares it with the IP addresses it knows to be local. If the address is not in the table, the device hands the packet off to its default gateway.

This table is used to coordinate the IP address with the MAC addresses that are known to be local to the device. In many situations, this list is a dynamic one that is built up from traffic passing through the device and through Address Resolution Protocol (ARP) notifications from new devices joining the network. There is no authentication or verification that the request the device received is valid. Thus, a malicious user is able to send messages to routing devices and APs stating that his MAC address is associated with a known IP address. From then on, all traffic that goes through that router destined for the hijacked IP address will be handed off to the hacker’s machine.

If the attacker spoofs as the default gateway or a specific host on the network, all machines trying to get to the network or the spoofed machine will connect to the attacker’s machine instead of their intended target. If the attacker is clever, he will only use this information to identify passwords and other necessary information and route the rest of the traffic to the intended recipients. If he does this, the end users will have no idea that this man in the middle has intercepted their communications and compromised their passwords and information.

Another clever attack can be accomplished through the use of rogue APs. If the attacker is able to put together an AP with enough strength, the end users might not be able to tell which AP is the authorized one that they should be using. In fact, most will not even know that another AP is available. Using this technique, the attacker is able to receive authentication requests and information from the end workstation regarding the secret key and where users are attempting to connect.

These rogue APs can also be used to attempt to break into more tightly configured wireless APs. Utilizing tools such as AirSnort and WEPCrack requires a large amount of data to be able to decrypt the secret key. An intruder sitting in a car in front of your house or office is noticeable and thus will generally not have time to finish acquiring enough information to break the key. However, if the attacker installs a tiny, easily hidden machine in an inconspicuous location, this machine could sit there long enough to break the key and possibly act as an external AP into the wireless network it has hacked.

Once an attacker has identified a network for attack and spoofed his MAC address to become a valid member of the network, the attacker can gain further information that is not available through simple sniffing. If the network being attacked is using SSH to access the hosts, just stealing a password might be easier than attempting to break into the host using an available exploit.

By simply ARP-spoofing the connection with the AP, the attacker can appear to be the host from which the attacker wants to steal passwords. The attacker can then cause all wireless users who are attempting to SSH into the host to connect to the rogue machine instead. When these users attempt to sign on with their passwords, the attacker is then able to, first, receive their passwords, and, second, pass on the connection to the real end destination. If the attacker does not perform the second step, it increases the likelihood that the attack will be noticed because users will begin to complain that they are unable to connect to the host.



 < Day Day Up > 



WarDriving(c) Drive, Detect, Defend(c) A Guide to Wireless Security
Special Edition Using Macromedia Studio 8
ISBN: N/A
EAN: 2147483647
Year: 2006
Pages: 125

flylib.com © 2008-2017.
If you may any questions please contact us: flylib@qtcs.net